精英家教网 > 初中数学 > 题目详情

【题目】如图,在Rt△ABC中,∠ACB=90°,AC=5,BC=12,将△ABC绕点B顺时针旋转60°,得到△BDE,连接DCAB于点F,则△ACF与△BDF的周长之和为 ___________

【答案】42

【解析】

根据将△ABC绕点B顺时针旋转60°,得到△BDE可得△ABC≌△BDECBD=60°,BD=BC=12cm从而得到△BCD为等边三角形得到CD=BC=CD=12cm.在RtACB利用勾股定理得到AB=13所以△ACF与△BDF的周长之和=AC+AF+CF+BF+DF+BD=AC+AB+CD+BD即可解答

∵将△ABC绕点B顺时针旋转60°,得到△BDE∴△ABC≌△BDECBD=60°,BD=BC=12cm∴△BCD为等边三角形CD=BC=CD=12cm.在RtACBAB==13ACF与△BDF的周长之和=AC+AF+CF+BF+DF+BD=AC+AB+CD+BD=5+13+12+12=42cm).

故答案为:42

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图1,在Rt△ACB中,∠BAC=90°AB=AC,分别过BC两点作过点A的直线l的垂线,垂足为DE

1)如图1,当DE两点在直线BC的同侧时,猜想,BDCEDE三条线段有怎样的数量关系?并说明理由.

2)如图(2),将(1)中的条件改为:在△ABC中,AB=ACDAE三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.

3)如图3∠BAC=90°AB=25AC=35.点PB点出发沿B→A→C路径向终点C运动;点QC点出发沿C→A→B路径向终点B运动.点PQ分别以每秒23个单位的速度同时开始运动,只要有一点到达相应的终点时两点同时停止运动;在运动过程中,分别过PQPF⊥lFQG⊥lG.问:点P运动多少秒时,△PFA△QAG全等?(直接写出答案)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知AD∥BC,AB⊥BC,AB=3,点E为射线BC上一个动点,连接AE,将△ABE沿AE折叠,点B落在点B′处,过点B′作AD的垂线,分别交AD,BC于点M,N.当点B′为线段MN的三等分点时,BE的长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】根据要求回答问题

(1)发现:如图1,点A为线段BC外一动点,且BC=a,AB=b.
当点A位于时,线段AC的长取得最大值,且最大值为(用含a,b的式子表示)
(2)应用:点A为线段BC外一动点,且BC=3,AB=1,如图2所示,分别以AB,AC为边,作等边三角形ABD和等边三角形ACE,连接CD,BE.
①请找出图中与BE相等的线段,并说明理由;
②直接写出线段BE长的最大值.

(3)拓展:如图3,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(5,0),点P为线段AB外一动点,且PA=2,PM=PB,∠BPM=90°,请直接写出线段AM长的最大值及此时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在平面直角坐标系中,已知A(a,0),B(b,3),C(4,0),且满足(a+b)2+|a﹣b+6|=0,线段AB交y轴于F点.

(1)求点A、B的坐标;

(2)点D为y轴正半轴上一点,若ED∥AB,且AM,DM分别平分∠CAB,∠ODE,如图 2,求∠AMD的度数;

(3)如图 3,(也可以利用图 1)①求点F的坐标;②坐标轴上是否存在点P,使得△ABP和△ABC的面积相等?若存在,求出P点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ACB△ECD都是等腰直角三角形,∠ACB=∠DCE=90°.

(1)求证:BD=AE;

(2)若△ACB不动,把△DCE绕点C旋转到使点D落在AB边上,如图2所示,问上述结论还成立吗?若成立,给予证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知CD=6m,AD=8m,ADC=90°,BC=24m,AB=26m.图中阴影部分的面积=_____m2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,下面是利用尺规作∠AOB的角平分线OC的作法:

①以点O为圆心,任意长为半径作弧,交OA、OB于点D,E;

②分别以点D,E为圆心,以大于DE的长为半径作弧,两弧在∠AOB内部交于点C;

③作射线OC,则射线OC就是∠AOB的平分线.

以上用尺规作角平分线时,用到的三角形全等的判定方法是(  )

A. SSS B. SAS

C. ASA D. AAS

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,CB=CA,∠ACB=90°,点D在边BC上(与B、C不重合),四边形ADEF为正方形,过点F作FG⊥CA,交CA的延长线于点G,连接FB,交DE于点Q,给出以下结论:
①AC=FG;②SFAB:S四边形CBFG=1:2;③∠ABC=∠ABF;④AD2=FQAC,
其中正确的结论的个数是( )

A.1
B.2
C.3
D.4

查看答案和解析>>

同步练习册答案