【题目】如图,已知CD=6m,AD=8m,∠ADC=90°,BC=24m,AB=26m.图中阴影部分的面积=_____m2.
【答案】96
【解析】
利用勾股定理求出AC值,结合三角形面积公式求得S△ADC;
接下来计算AC2+BC2、AB2,可得△ABC为直角三角形,结合三角形面积公式求得S△ABC,然后根据阴影部分的面积=S△ABC-S△ADC计算即可.
∵CD=6m,AD=8m,∠ACD=90°,
∴AC=10m,S△ADC=×6×8=24(m2).
∵AC=10m,CB=24m,AB=26m,
∴AC2+BC2=AB2,
∴△ABC是以AB为斜边的直角三角形.
∵△ABC是直角三角形,AC=10m,CB=24m,
∴S△ABC=×10×24=120(m2),
∴S△ABC-S△ADC=120-24=96(m2).
即图中阴影部分的面积为96m2.
故答案为:96.
科目:初中数学 来源: 题型:
【题目】已知△ABC和△ADE是等腰直角三角形,∠ACB=∠ADE=90°,点F为BE中点,连接DF,CF.
(1)如图1,当点D在AB上,点E在AC上,请直接写出此时线段DF,CF的数量关系和位置关系(不用证明);
(2)如图2,在(1)的条件下将△ADE绕点A顺时针旋转45°时,请你判断此时(1)中的结论是否仍然成立,并证明你的判断;
(3)如图3,在(1)的条件下将△ADE绕点A顺时针旋转90°时,若AD=1,AC= ,求此时线段CF的长(直接写出结果).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小刘从家里骑自行车出发,去镇上超市途中碰到妹妹甜甜走路从镇上回家,小刘在超市买完东西回家,在回去的路上又碰到了甜甜,便载甜甜一起回家,结果小刘比正常速度回家的时间晚了3分钟,二人离镇的距离S(千米)和小刘从家出发后的时间t(分钟)之间的关系如图所示,(假设二人之间交流时间忽略不计)
(1)小刘家离镇上的距离 .
(2)小刘和甜甜第1次相遇时离镇上距离是多少?
(3)小刘从家里出发到回家所用的时间?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC是以BC为底的等腰三角形,AD是边BC上的高,点E、F分别是AB、AC的中点.
(1)求证:四边形AEDF是菱形;
(2)如果四边形AEDF的周长为12,两条对角线的和等于7,求四边形AEDF的面积S.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线与轴、轴分别相交于点C、B,与直线相交于点A.
(1)求A点坐标;
(2)如果在y轴上存在一点P,使△OAP是以OA为底边的等腰三角形,求P点坐标;
(3)在直线上是否存在点Q,使△OAQ的面积等于6?若存在,请求出Q点的坐标,若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了从甲乙两人中选拔一人参加初中数学竞赛,每个月对他们进行一次测试,如图绘出了两个人赛前 5 次测验成绩(每次测验成绩都是 5 的倍数).
(1)分别求出甲乙两人 5 次测验成绩的平均数与方差;
(2)如果你是他们的辅导老师,应该选拔哪位学生参加这次竞赛,并简要说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知数轴上有A,B两点,分别代表﹣40,20,两只电子蚂蚁甲,乙分别从AB两点同时出发,甲沿线段AB以3个单位长度/秒的速度向右运动,甲到达点B处时运动停止,乙沿BA方向以5个单位长度/秒的速度向左运动.
(1)A,B两点间的距离为 个单位长度;甲到达B点时共运动了 秒.
(2)甲,乙在数轴上的哪个点相遇?
(3)多少秒时,甲、乙相距28个单位长度?
(4)若乙到达A点后立刻掉头并保持速度不变,则甲到达B点前,甲,乙还能在数轴上相遇吗?若能,求出相遇点所对应的数;若不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知一次函数y=x-15的图象与x轴,y轴分别交于点A,B,O为坐标原点,则在△OAB内部(包括边界),纵坐标、横坐标都是整数的点(整点)共有_________个.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com