【题目】已知反比例函数 的图象经过点M(2,1)
(1)该函数的表达式
(2)当2<x<4时,求y的取值范围(直接写出结果).
科目:初中数学 来源: 题型:
【题目】如图,抛物线y= x2﹣2x﹣6 与x轴交于A,B两点(点A在点B左侧),与y轴交于点C,点D为顶点,点E在抛物线上,且横坐标为4 ,AE与y轴交F.
(1)求抛物线的顶点D和F的坐标;
(2)点M,N是抛物线对称轴上两点,且M(2 ,a),N(2 ,a+ ),是否存在a使F,C,M,N四点所围成的四边形周长最小,若存在,求出这个周长最小值,并求出a的值;
(3)连接BC交对称轴于点P,点Q是线段BD上的一个动点,自点D以2 个单位每秒的速度向终点B运动,连接PQ,将△DPQ沿PQ翻折,点D的对应点为D′,设Q点的运动时间为t(0≤t≤ )秒,求使得△D′PQ与△PQB重叠部分的面积为△DPQ面积的 时对应的t值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,等边三角形纸片ABC中,点D在边AB(不包含端点A、B)上运动,连接CD,将∠ADC对折,点A落在直线CD上的点A′处,得到折痕DE;将∠BDC对折,点B落在直线CD上的点B′处,得到折痕DF.
(1)若∠ADC=80°,求∠BDF的度数;
(2)试问∠EDF的大小是否会随着点D的运动而变化?若不变,求出∠EDF的大小;若变化,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】莫小贝在襄阳北街租了一家商铺专门销售各种旅游纪念品.本月初他在进货时发现:若购进甲种纪念品 3
件,乙种纪念品 2 件,需要 400 元,若购进甲种纪念品 4 件,乙种纪念品 5 件,需要 650 元. (1)求购进甲乙两种纪念品每件各需要多少元?
(2)若莫小贝决定购进这两种纪念品共 100 件,其中甲种纪念品的数量不少于 65 件.考虑到资金周转,用于购 买这些纪念品的资金不超过 9000 元,那么莫小贝共有几种进货方案?
(3)若每卖出一件甲种纪念品可获利润 20 元,一件乙种纪念品可获利润 35 元.在(2)的条件下,所购的 100 件 纪念品可以全部销售完,怎样进货才能使得获得的利润最大?最大利润是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:△ABC中AB=AC,M为底边BC上任意一点,过点M分别作AB、AC的平行线交AC于P,交AB于Q.
探究:(1)线段QM、PM、AB之间有什么关系?并说明你的理由.
(2)当M位于BC的什么位置时, 四边形AQMP是菱形?并说明你的理由.
(3)当△ABC满足什么条件菱形AQMP是正方形?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明在测量楼高时,先测出楼房落在地面上的影长BA为15米(如图),然后在A处树立一根高2米的标杆,测得标杆的影长AC为3米,则楼高为( )
A.10米
B.12米
C.15米
D.22.5米
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com