精英家教网 > 初中数学 > 题目详情

【题目】如图,△ABC中,AB=AC,BAC=90°,DAC上,点EBA的延长线上,且CD=AE过点AAFCE,垂足为F,过点DBC的平行线,交AB于点G,FA的延长线于点H.

(1)求证∠ACE=BAH;

(2)在图中找出与CE相等的线段,并证明;

(3)GH=DH,的值(用含的代数式表示).

【答案】(1)证明过程见解析;(2)与相等的线段是,证明过程见解析;(3).

【解析】

1)根据得到,从而证明即可;

2)在上截取,连接,通过角度转换得到证明AG=AD,从而证明,即可证明AH=CE

3)连接,先证,得到,从而证明四边形是平行四边形,得到,再证,则,从而得到,即可求出.

1)证明:

2)与相等的线段是,证明如下:

上截取,连接

△AGH△CME

3)解:连接

∴AH=CE

△ABH△CAE

四边形是平行四边形,

,则

.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某数学小组对函数y1图象和性质进行探究.当x4时,y10

1)当x5时,求y1的值;

2)在给出的平面直角坐标系中,补全这个函数的图象,并写出这个函数的一条性质;

3)进一步探究函数图象并解决问题:已知函数y2=﹣的图象如图所示,结合函数y1的图象,直接写出不等式y1y2的解集.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在每个小正方形的边长为1的网格中,AMN均在格点上.在线段上有一动点B,以为直角边在的右侧作等腰直角,使G是一个小正方形边的中点.

(1)当点B的位置满足时,求此时的长_______

(2)请用无刻度的直尺,在如图所示的网格中,画出一个点C,使其满足线段最短,并简要说明点C的位置是如何找到的(不要求证明)____________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知在平面直角坐标系xOy中,直线y2x+2和直线yx+2分别交x轴于点A和点B.则下列直线中,与x轴的交点不在线段AB上的直线是(  )

A.yx+2B.yx+2C.y4x+2D.yx+2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知在ABC中,ACBCmDAB边上的一点,将∠B沿着过点D的直线折叠,使点B落在AC边的点P处(不与点AC重合),折痕交BC边于点E

1)特例感知 如图1,若∠C60°DAB的中点,求证:APAC

2)变式求异 如图2,若∠C90°m6AD7,过点DDHAC于点H,求DHAP的长;

3)化归探究 如图3,若m10AB12,且当ADa时,存在两次不同的折叠,使点B落在AC边上两个不同的位置,请直接写出a的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校计划组织学生参加学校书法、摄影、篮球、乒乓球四个课外兴趣小组,要求每人必须参加并且只能选择其中的一个小组,为了了解学生对四个课外小组的选择情况,学校从全体学生中随机抽取部分学生进行问卷调查,并把调查结果制成如图所示的两幅不完整的统计图,请你根据给出的信息解答下列问题:

1)求该校参加这次问卷调查的学生人数,并补全条形统计图(画图后请标注相应的数据);

2m    n    

3)若该校共有2000名学生,试估计该校选择乒乓球课外兴趣小组的学生有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解不等式组:请结合题意填空,完成本题的解答:

1)解不等式①,得:  

2)解不等式②得:  

3)把不等式①和②的解集在数轴上表示出来;

4)原不等式组的解集为:  

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在6×4的方格纸ABCD中,请按要求画格点线段(端点在格点上),且线段的端点均不与点ABCD重合.

1)在图1中画格点线段EFGH各一条,使点EFGH分别落在边ABBCCDDA上,且EFGHEF不平行GH

2)在图2中画格点线段MNPQ各一条,使点MNPQ分别落在边ABBCCDDA上,且PQMN

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=﹣x2+bx+c和直线y=x+1交于A,B两点,点Ax轴上,点B在直线x=3上,直线x=3x轴交于点C

(1)求抛物线的解析式;

(2)点P从点A出发,以每秒个单位长度的速度沿线段AB向点B运动,点Q从点C出发,以每秒2个单位长度的速度沿线段CA向点A运动,点P,Q同时出发,当其中一点到达终点时,另一个点也随之停止运动,设运动时间为t秒(t>0).以PQ为边作矩形PQNM,使点N在直线x=3上.

①当t为何值时,矩形PQNM的面积最小?并求出最小面积;

②直接写出当t为何值时,恰好有矩形PQNM的顶点落在抛物线上.

查看答案和解析>>

同步练习册答案