精英家教网 > 初中数学 > 题目详情

【题目】结合数轴与绝对值的知识回答下列问题:

(1)数轴上表示41的两点之间的距离是   ;表示﹣32两点之间的距离是   ;一般地,数轴上表示数m和数n的两点之间的距离等于|mn|.如果表示数a和﹣2的两点之间的距离是3,那么a   

(2)若数轴上表示数a的点位于﹣42之间,求|a+4|+|a﹣2|的值;

(3)当a取何值时,|a+5|+|a﹣1|+|a﹣4|的值最小,最小值是多少?请说明理由.

【答案】13515;(2639

【解析】

试题(1)根据数轴,观察两点之间的距离即可解决;

2)根据|a+4|+|a-2|表示数a的点到-42两点的距离的和即可求解.

试题解析:(13515

2表示数轴上数和数-42之间距离的和,又因为位于-42之间,

等于-42之间的距离和,

|2-(-4|6

3表示数轴上数和数-514之间距离的和,

∴a1时距离的和最小

|4-(-5|9

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,一次函数分别交y轴、x 轴于AB两点,抛物线AB两点.

1)求这个抛物线的解析式;

2)作垂直x轴的直线x=t,在第一象限交直线AB于点M,交这个抛物线于点N.求当t 取何值时,MN有最大值?最大值是多少?

3)在2)的情况下,以AMND为顶点作平行四边形,求第四个顶点D的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线y=x2﹣4xmm>0)与x轴交于AB两点,与y轴交于点CD为抛物线的顶点,C点关于抛物线对称轴的对称点为C点.

(1)若m=5时,求ABD的面积.

(2)若在(1)的条件下,点E在线段BC下方的抛物线上运动,求BCE面积的最大值.

(3)写出C点( )、C点( )坐标(用含m的代数式表示)

如果点Q在抛物线的对称轴上,点P在抛物线上,以点CC′、PQ为顶点的四边形是平行四边形,直接写出Q点和P点的坐标(可用含m的代数式表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线y=kx+b过点A(5,0)和点C,反比例函数y=(x<0)过点D,作BDx轴交y轴于点B(0,﹣3),且BD=OC,tanOAC=

(1)求反比例函数y=(x<0)和直线y=kx+b的解析式;

(2)连接CD,判断线段AC与线段CD的关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的一次函数y=mx+2的图象经过点(﹣2,6).

(1)求m的值;

(2)画出此函数的图象;

(3)平移此函数的图象,使得它与两坐标轴所围成的图形的面积为4,请直接写出此时图象所对应的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线y=a(x+3)(x﹣1)(a≠0),与x轴从左至右依次相交于A、B两点,与y轴相交于点C,经过点A的直线y=﹣x+b与抛物线的另一个交点为D.

(1)若点D的横坐标为2,求抛物线的函数解析式;

(2)若在第三象限内的抛物线上有点P,使得以A、B、P为顶点的三角形与△ABC相似,求点P的坐标;

(3)在(1)的条件下,设点E是线段AD上的一点(不含端点),连接BE.一动点Q从点B出发,沿线段BE以每秒1个单位的速度运动到点E,再沿线段ED以每秒个单位的速度运动到点D后停止,问当点E的坐标是多少时,点Q在整个运动过程中所用时间最少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有四张规格、质地相同的卡片,它们背面完全相同,正面图案分别是A.平行四边形,B.菱形,C.矩形,D.正方形,将这四张卡片背面朝上洗匀后.

(1)随机抽取一张卡片图案是轴对称图形的概率是   

(2)随机抽取两张卡片(不放回),求两张卡片卡片图案都是轴对称图形的概率,并用树状图或列表法加以说明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,P是线段AB上一点,AB=12cmCD两点分别从PB出发以1cm/s2cm/s的速度沿直线AB向左运动(C在线段AP上,D在线段BP上),运动的时间为t.

1)当t=1时,PD=2AC,请求出AP的长;

2)当t=2时,PD=2AC,请求出AP的长;

3)若CD运动到任一时刻时,总有PD=2AC,请求出AP的长;

4)在(3)的条件下,Q是直线AB上一点,且AQBQ=PQ,求PQ的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第五个图形需要黑色棋子的个数是 ,第n个图形需要黑色棋子的个数是 (n≥1,且n为整数).

查看答案和解析>>

同步练习册答案