【题目】点的坐标为,点的坐标为,点的坐标为.
()在轴上是否存在点,使为等腰三角形,求出点坐标.
()在轴上方存在点,使以点, , 为顶点的三角形与全等,画出并请直接写出点的坐标.
【答案】(), , , ;()作图见解析,点的坐标为或.
【解析】试题分析:
(1)如图1,分别以点B、C为圆心,BC为半径作圆交轴于点P1、P2、P3,作BC的垂直平分线交轴于点P4,这4个点为所求点,结合已知条件求出它们的坐标即可;
(2)如图2,根据成轴对称的两个三角形全等,作出点C关于直线AB的对称点D,连接BD、AD,所得△ABD为所求三角形;再作出点D关于直线的对称点D1,连接AD1、BD1,所得△ABD1也是所求三角形;即有两个符合要求的三角形;
试题解析:
()如图1,∵点B、C的坐标分别为(0,2)、(1,0),
∴BC=.
分别以点B、C为圆心,BC为半径作圆交轴于点P1、P2、P3,
则OP1=OB+BP1=OB+BC=,OP2=BP2-OB=BC-OB=,OP3=OB=2;
设OP4= ,则BP4=CP4= ,在Rt△OCP4中,由勾股定理可得: ,解得: ,即OP4=;
∴①△P1BC是等腰三角形,BP1=BC,此时点P的坐标为;
②△P2BC是等腰三角形,BP2=BC,此时点P的坐标为;
③△P3BC是等腰三角形,P3C=BC,此时点P的坐标为;
④△P4BC是等腰三角形,BP4=CP4,此时点P的坐标为.
()如图2,设点关于直线的对称点,则≌,
设过点, 的直线的解析式为.
则,
∴,
∴.
∴直线的解析式为.
由,
解得,
∴点.
∵,
∴,
根据对称性,点关于直线的对称点D1也满足条件.
综上所述,满足条件的点的坐标为或.
科目:初中数学 来源: 题型:
【题目】(本题10分)如图,在△ABC中,AB=AC,以AC为直径的⊙O交AB于点D,交BC于点E.
(1)求证:BE=CE;
(2)若BD=2,BE=3,求AC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:用3辆A型车和2辆B型车载满货物一次可运货共19吨;用2辆A型车和3辆B型车载满货物一次可运货共21吨.
(1)1辆A型车和1辆B型车都载满货物一次分别可以运货多少吨?
(2)某物流公司现有49吨货物,计划同时租用A型车辆,B型车辆,一次运完,且恰好每辆车都载满货物.
①求、的值;
②若A型车每辆需租金130元/次,B型车每辆需租金200元/次.请求出租车费用最少是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某班13位同学参加每周一次的卫生大扫除,按学校的卫生要求需要完成总面积为60m2的三个项目的任务,三个项目的面积比例和每人每分钟完成各项目的工作量如图所示:
(1)从统计图中可知:擦玻璃的面积占总面积的百分比为________,每人每分钟擦课桌椅________m2;
(2)扫地拖地的面积是________m2;
(3)他们一起完成扫地和拖地任务后,把这13人分成两组,一组去擦玻璃,一组去擦课桌椅,如果你是卫生委员,该如何分配这两组的人数,才能最快地完成任务?(要有详细的解答过程)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,点A(t+1,t+2),点B(t+3,t+1),将点A向右平移3个长度单位,再向下平移4个长度单位得到点C.
(1)用t表示点C的坐标为_______;用t表示点B到y轴的距离为___________;
(2)若t=1时,平移线段AB,使点A、B到坐标轴上的点、处,指出平移的方向和距离,并求出点、的坐标;
(3)若t=0时,平移线段AB至MN(点A与点M对应),使点M落在x轴的负半轴上,三角形MNB的面积为4,试求点M、N的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com