【题目】已知:如图,BE⊥CD,BE=DE,BC=DA.
求证:(1)△BEC≌△DAE;
(2)DF⊥BC.
【答案】证明见解析.
【解析】试题分析:此题主要考查学生对全等三角形的判定及性质的理解及运用.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.
(1)根据已知利用HL即可判定△BEC≌△DEA;
(2)根据第(1)问的结论,利用全等三角形的对应角相等可得到∠B=∠D,从而不难求得DF⊥BC.
试题解析:证明:(1)∵BE⊥CD,
∴∠BEC=∠DEA=90°,
∴在Rt△BEC与Rt△DEA中,
,
∴△BEC≌△DEA(HL);
(2)∵由(1)知,△BEC≌△DEA,
∴∠B=∠D.
∵∠D+∠DAE=90°,∠DAE=∠BAF,
∴∠BAF+∠B=90°,即DF⊥BC.
科目:初中数学 来源: 题型:
【题目】未来三年,国家将投入8450亿元用于缓解群众“看病难、看病贵”的问题.将8450亿元用科学记数法表示为( )
A.0.845×104亿元
B.8.45×103亿元
C.8.45×104亿元
D.84.5×102亿元
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校篮球队五名主力队员的身高分别是174,179,180,174,178(单位:cm),则这五名队员身高的中位数是( )
A.174cm
B.177cm
C.178cm
D.180cm
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小黄同学在参加今年体育中考前进行了针对性训练,最近7次的训练成绩依次为:41,43,43,44,45,45,45,那么这组数据的中位数是( )
A.41
B.43
C.44
D.45
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com