精英家教网 > 初中数学 > 题目详情
16.如图所示,I为△ABC的内心,M为BC的中点,四边形IQDM为平行四边形,求证:∠QMD=90°.

分析 作IE⊥BC于E,根据内心的概念得到$\frac{BF}{AB}$=$\frac{CF}{AC}$,根据合比性质得到$\frac{BF}{AB}$=$\frac{CF}{AC}$=$\frac{BC}{AB+AC}$,证明DM=EM,根据平行四边形的性质和全等三角形的判定定理得到△QMD≌△IEM,根据全等三角形的性质得到答案.

解答 证明:作IE⊥BC于E,
∵I为△ABC的内心,
∴AF平分∠BAC,
∴$\frac{BF}{AB}$=$\frac{CF}{AC}$,
∴$\frac{BF}{AB}$=$\frac{CF}{AC}$=$\frac{BC}{AB+AC}$,
∴BF=$\frac{BC}{AB+AC}$•AB,
FM=BM-BF=$\frac{BC}{2}$-$\frac{BC}{AB+AC}$•AB,
$\frac{DM}{FM}$=$\frac{AI}{IF}$=$\frac{AB}{BF}$=$\frac{AC+AB}{BC}$,
∴DM=$\frac{AC+AB}{BC}$•FM=$\frac{AC-AB}{2}$,
又∵EM=BM-BE=$\frac{BC}{2}$-$\frac{CB+AB-AC}{2}$=$\frac{AC-AB}{2}$,
∴DM=EM,
∵四边形IQDM为平行四边形,
∴∠IME=∠QDM,IM=QD,
在△QMD和△IEM中,
$\left\{\begin{array}{l}{DM=EM}\\{∠QDM=∠IME}\\{DM=ME}\end{array}\right.$,
∴△QMD≌△IEM,
∴∠QMD=∠IEM=90°,
∴∠QMD=90°.

点评 本题考查的是三角形的五心的概念,掌握三角形的内心的概念、平行四边形的性质和合比性质是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

10.已知:AB=CD,AE⊥BC于E,DF⊥BC于F,且CE=BF,求证:∠A=∠D.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.绛县“大自然服装城”在国庆期间为了促销,下调部分服装价格,男式衬衫经过两次降价由每件100元降到每件81元,则平均每次降低率为(  )
A.8%B.9%C.10%D.11%

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图,已知抛物线y=ax2+2x+c的顶点为A(-1,-4),与y轴交于点B,与x轴负半轴交于点C.
(1)求这条抛物线的函数关系式;
(2)点P为第三象限内抛物线上的一动点,连接BC、PC、PB,求△BCP面积的最大值,并求出此时点P的坐标;
(3)点E为抛物线上的一点,点F为x轴上的一点,若四边形ABEF为平行四边形,请直接写出所有符合条件的点E的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”.如图1,点A、B、C、D分别是“蛋圆”与坐标轴的交点,已知点D的坐标为(0,-3),AB为半圆的直径,半圆圆心M的坐标为(1,0),半圆半径为2.
(1)请你求出“蛋圆”抛物线部分的解析式,并写出自变量的取值范围;
(2)将图中“蛋圆”整体向上平移,并使得抛物线的顶点与点(1,-2)重合,从而形成一个“阿拉伯人”的卡通形象,求这个“阿拉伯人”络缌部分(图2中阴影部分)的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.解方程组:
(1)$\left\{\begin{array}{l}{x-y=4}\\{2x+y=5}\end{array}\right.$      (2)$\left\{\begin{array}{l}{3x-2y=8}\\{y+4x=7}\end{array}\right.$
(3)$\left\{\begin{array}{l}{3x+2y=8}\\{4x-5y=3}\end{array}\right.$     (4)$\left\{\begin{array}{l}{x+y=3}\\{y+z=5}\\{x+z=6}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.一个正方体的平面展开图如图,已知正方体相对两个面上的数之和相等,则a=-3,b=2.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,正方形ABCD的边长为6,点E是射线BC上的一个动点,连接AE并延长,交射线DC于点F,将△ABE沿直线AE翻折,点B坐在点B′处.
自主探究:
(1)当$\frac{BE}{CE}$=1时,如图1,延长AB′,交CD于点M.
①CF的长为6;
②判断AM与FM的数量关系,并证明你的结论.
(2)当点B′恰好落在对角线AC上时,如图2,此时CF的长为6$\sqrt{2}$,$\frac{BE}{CE}$=$\frac{\sqrt{2}}{2}$.
拓展运用:
 (3)当$\frac{BE}{CE}$=2时,求sin∠DAB′的值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.如图所示,在△ABC中,∠C=45°,∠B=15°,AB的垂直平分线交AB于E,交BC于D,DB=10,那么AC=5$\sqrt{2}$.

查看答案和解析>>

同步练习册答案