精英家教网 > 初中数学 > 题目详情
18.如图,等腰Rt△ABC中,∠ABC=90°,点A、B分别在坐标轴上.
(1)如图①,若C点的横坐标为5,求B点的坐标;
(2)如图②,若x轴恰好平分∠BAC,BC交x轴于点M,过C点作CD⊥x轴于D点,求$\frac{CD}{AM}$的值;
(3)如图③,若点A的坐标为(-4,0),点B在y轴的正半轴上运动时,分别以OB、AB为边在第一、第二象限作等腰Rt△OBF,等腰Rt△ABE,连接EF交y轴于P点,当点B在y轴上移动时,PB的长度是否发生改变?若不变,求出PB的值,若变化,求PB的取值范围.

分析 (1)作CD⊥BO,易证△ABO≌△BCD,根据全等三角形对应边相等的性质即可解题;
(2)设AB=BC=a,根据勾股定理求出AC=$\sqrt{2}$a,根据MA(即x轴)平分∠BAC,得到$\frac{BM}{MC}$=$\frac{AB}{AC}$=$\frac{\sqrt{2}}{2}$,求得BM=($\sqrt{2}$-1)a,MC=(2-$\sqrt{2}$)a,AM=$\sqrt{4-2\sqrt{2}}$a,再证明Rt△ABM∽Rt△CDM,得到$\frac{AB}{CD}$=$\frac{AM}{CM}$,即CD=$\frac{AB•CM}{AM}$,即可解答,
(3)作EG⊥y轴,易证△BAO≌△EBG和△EGP≌△FBP,可得BG=AO和PB=PG,即可求得PB=$\frac{1}{2}$AO,即可解题.

解答 解:(1)如图1,作CD⊥BO于D,
∵∠CBD+∠ABO=90°,∠ABO+∠BAO=90°,
∴∠CBD=∠BAO,
在△ABO和△BCD中,
$\left\{\begin{array}{l}{∠BOA=∠BDC=90°}\\{∠CBD=∠BAO}\\{AB=BC}\end{array}\right.$,
∴△ABO≌△BCD(AAS),
∴CD=BO=5,
∴B点坐标(O,5);

(2)设AB=BC=a,
则AC=$\sqrt{2}$a,
∵MA(即x轴)平分∠BAC,
∴$\frac{BM}{MC}$=$\frac{AB}{AC}$=$\frac{\sqrt{2}}{2}$,
即MC=$\sqrt{2}$BM,
∵BC=BM+MC=a,
∴BM+$\sqrt{2}$BM=a,
解得BM=($\sqrt{2}$-1)a,MC=(2-$\sqrt{2}$)a
则AM=$\sqrt{A{B}^{2}+B{M}^{2}}$=$\sqrt{4-2\sqrt{2}}$a,
∵∠ABM=∠CDM=90°
且∠AMB=∠CMD
∴Rt△ABM∽Rt△CDM,
∴$\frac{AB}{CD}$=$\frac{AM}{CM}$,
即CD═$\frac{AB•CM}{AM}$,
∴$\frac{CD}{AM}$=$\frac{a•(2-\sqrt{2})a}{(\sqrt{4-2\sqrt{2}}a)^{2}}$=$\frac{1}{2}$;

(3)如图3,作EG⊥y轴于G,
∵∠BAO+∠OBA=90°,∠OBA+∠EBG=90°,
∴∠BAO=∠EBG,
在△BAO和△EBG中,
$\left\{\begin{array}{l}{∠AOB=∠BGE=90°}\\{∠BAO=∠EBG}\\{AB=BE}\end{array}\right.$,
∴△BAO≌△EBG(AAS),
∴BG=AO,EG=OB,
∵OB=BF,
∴BF=EG,
在△EGP和△FBP中,
$\left\{\begin{array}{l}{∠EPG=∠FPB}\\{∠EGP=∠FBP=90°}\\{EG=BF}\end{array}\right.$,
∴△EGP≌△FBP(AAS),
∴PB=PG,
∴PB=$\frac{1}{2}$BG=$\frac{1}{2}$AO=2.

点评 本题考查了勾股定理、角平分线的性质、相似三角形的判定与性质,熟练掌握三角形全等的证明是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

3.关于x的方程kx2+(3k+1)x+3=0.
(1)求证:无论k取任何实数时,方程总有实数根;
(2)当二次函数y=kx2+(3k+1)x+3的图象与x轴两个交点的横坐标均为整数,且k为负整数时,求出函数的最大(或最小)值,并画出函数图象;
(3)若P(a,y1),Q(2,y2)是(2)中抛物线上的两点,且y1>y2,请你结合函数图象确定实数a的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.如图,为测量河两岸相对两电线杆A、B间的距离,在距A点16m的C处(AC⊥AB),测得∠ACB=52°,则A、B之间的距离应为(  )
A.16sin52°mB.16cos52°mC.16tan52°mD.$\frac{16}{tan52°}$m

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,点C是线段AB上的任意一点(C点不与A、B点重合),分别以AC、BC为边在直线AB的同侧作等边三角形△ACD和等边三角形BCE,AE与CD相交于点M,BD与CE相交于点N.
(1)△ACE≌△DCB;
(2)△ACM≌△DCN;
(3)MN∥AB.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图1,在△ABC中,∠C=90°,CA=CB,异于C,B的动点D在CB边上,DE⊥AD.
(1)求证:∠1=∠2;
(2)如图2,BE⊥BA交BE于E,求证:AD=DE.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.已知二次函数y=x2-x-6.
(1)画出函数的图象;
(2)观察图象,说出顶点坐标、指出方程x2-x-6=0的解.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.将二次函数y=x2+4x-2配方成y=(x-h)2+k的形式,则y=(x+2)2-6.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.先化简,再求值:3(2a2b-3ab2-1)-2(3a2b-4ab2+1)-1,其中a=2,b=-1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.解方程组:$\left\{\begin{array}{l}{\frac{x+y}{2}+\frac{x-y}{3}=6}\\{2(x+y)-x+y=-4}\end{array}\right.$.

查看答案和解析>>

同步练习册答案