【题目】如图,在平面直角坐标系中,直线与轴交于点A,与轴交点C,抛物线过A,C两点,与x轴交于另一点B.
(1)求抛物线的解析式.
(2)在直线AC上方的抛物线上有一动点E,连接BE,与直线AC相交于点F,当时,求sin∠EBA的值.
(3)点N是抛物线对称轴上一点,在(2)的条件下,若点E位于对称轴左侧,在抛物线上是否存在一点M,使以M,N,E,B为顶点的四边形是平行四边形?若存在,直接写出点M的坐标;若不存在,请说明理由.
【答案】(1),(2)或 ,(3)存在;(2,﹣10)或(﹣4,﹣10)或(0,6)
【解析】
(1)先由直线解析式求出点A、C坐标,再将所求坐标代入二次函数解析式,求解可得;
(2)先求出B(1,0),设E(t,),作EH⊥x轴、FG⊥x轴,知EH∥FG,由EF=BF知,结合BH=1-t可得,据此知F(,),从而得出方程,解方程得出点E坐标,再进一步求解可得;
(3)分EB为平行四边形的边和EB为平行四边形的对角线两种情况,其中EB为平行四边形的边时再分点M在对称轴右侧和左侧两种情况分别求解可得.
解:(1)在y=2x+6中,当x=0时y=6,当y=0时x=﹣3,
∴C(0,6)、A(﹣3,0),
∵抛物线的图象经过A、C两点,
,解得:,
∴抛物线的解析式为;
(2)令﹣2x2﹣4x+6=0,
解得∴B(1,0),
设点E的横坐标为t,∴E(t,),
如图,过点E作EH⊥x轴于点H,过点F作FG⊥x轴于点G,则EH∥FG,
,
,
,
∴点F的横坐标为,
直线AC的解析式为y2x6,
,
,
∴t2+3t+2=0,解得
当t=﹣2时,
当t=﹣1时,
∴
当点E的坐标为(﹣2,6)时,在Rt△EBH中,EH=6,BH=3,
,
;
同理,当点E的坐标为(﹣1,8)时,
,
∴sin∠EBA的值为或;
(3)存在,且M的坐标为(2,﹣10)或(﹣4,﹣10)或(0,6).
∵点N在对称轴上,∴xN=﹣1,
①当EB为平行四边形的边时,分两种情况:
(Ⅰ)点M在对称轴右侧时,BN为对角线,
∵E,B(1,0),
∴由平移的性质得xM==2,
当x=2时,y=
∴M(2,﹣10);
(Ⅱ)点M在对称轴左侧时,BM为对角线,
∵xN=﹣1,B(1,0),E(﹣2,6),
∴由平移的性质得xM==﹣4,
当x=﹣4时,y=
∴M(﹣4,﹣10);
②当EB为平行四边形的对角线时,
∵B(1,0),E,xN=,
∴由中点坐标公式得:1+(﹣2)=﹣1+xM,
∴xM=0,
当x=0时,y=6,
∴M(0,6);
综上所述,M的坐标为(2,﹣10)或(﹣4,﹣10)或(0,6).
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,l是经过A(2,0),B(0,b)两点的直线,且b0,点C的坐标为(2,0),当点B移动时,过点C作CD⊥l交于点D.
(1)求点D,O之间的距离;
(2)当tan∠CDO=时,求直线l的解析式;
(3)在(2)的条件下,直接写出△ACD与△AOB重叠部分的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,二次函数y=x2―mx―n的图像与坐标轴交于A、B、C三点,其中A点的坐标为、点B的坐标是.
(1)求该二次函数的表达式及点C的坐标;
(2)若点D的坐标是,点F为该二次函数在第四象限内图像上的动点,连接CD、CF,以CD、CF为邻边作平行四边形CDEF.设平行四边形CDEF的面积为S.
①求S的最大值;
②在点F的运动过程中,当点E落在该二次函数图像上时,请求出点E的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是某路灯在铅垂面内的示意图,灯柱BC的高为10米,灯柱BC与灯杆AB的夹角为120°.路灯采用锥形灯罩,在地面上的照射区域DE的长为13.3米,从D、E两处测得路灯A的仰角分别为α和45°,且tanα=6.求灯杆AB的长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某服装店老板到厂家选购、两种品牌的羽绒服,品牌羽绒服每件进价比品牌羽绒服每件进价多元,若用元购进种羽绒服的数量是用元购进种羽绒服数量的倍.
(1)求、两种品牌羽绒服每件进价分别为多少元?
(2)若品牌羽绒服每件售价为元,品牌羽绒服每件售价为元,服装店老板决定一次性购进、两种品牌羽绒服共件,在这批羽绒服全部出售后所获利润不低于元,则最少购进品牌羽绒服多少件?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数的图象与轴交于点,与x轴负半轴交于B,与正半轴交于点,且.
(1)求该二次函数解析式;
(2)若是线段上一动点,作,交于点,连结当面积最大时,求点的坐标;
(3)若点为轴上方的抛物线上的一个动点,连接,设所得的面积为.问:是否存在一个的值,使得相应的点有且只有个,若有,求出这个的值,并求此时点的横坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“全民防控新冠病毒”期间某公司推出一款消毒产品,成本价8元/千克,经过市场调查,该产品的日销售量(千克)与销售单价(元/千克)之间满足一次函数关系,该产品的日销售量与销售单价几组对应值如表:
销售单价(元/千克) | 12 | 16 | 20 | 24 |
日销售量(千克) | 220 | 180 | 140 |
(注:日销售利润日销售量(销售单价成本单价)
(1)求关于的函数解析式(不要求写出的取值范围);
(2)根据以上信息,填空:
①_______千克;
②当销售价格_______元时,日销售利润最大,最大值是_______元;
(3)该公司决定从每天的销售利润中捐赠100元给“精准扶贫”对象,为了保证捐赠后每天的剩余利润不低于1500元,试确定该产品销售单价的范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在每个小正方形的边长为的网格图形中,每个小正方形的顶点称为格点.从一个格点移动到与之相距的另一个格点的运动称为一次跳马变换.例如,在的正方形网格图形中(如图1),从点经过一次跳马变换可以到达点,,,等处现有的正方形网格图形(如图2),则从该正方形的顶点经过跳马变换到达与其相对的顶点,最少需要跳马变换的次数是( )
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,∠BAC=90°.
(1)如图1,若直线AD与BC相交于M,过点B作AM的垂线,垂足为D,连接CD并延长BD至E,使得DE=DC,过点E作EF⊥CD于F,证明:AD=EF+BD.
(2)如图2,若直线AD与CB的延长线相交于M,过点B作AM的垂线,垂足为D,连接CD并延长BD至E,使得DE=DC,过点E作EF⊥CD交CD的延长线于F,探究:AD、EF、BD之间的数量关系,并证明.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com