精英家教网 > 初中数学 > 题目详情

【题目】利用我们学过的知识,可以得出下面这个优美的等式:

;该等式从左到右的变形,不仅保持了结构的对称性,还体现了数学的和谐、简洁美.

.请你证明这个等式;

.如果,请你求出 的值.

【答案】1)证明见解析;(23.

【解析】

1)已知等式右边利用完全平方公式化简,整理即可作出验证;

2)把abc的值代入已知等式右边,求出值即为所求式子的值.

1)证明:右边=[a-b2+b-c2+c-a2]= a2-2ab+b2+b2-2bc+c2+c2-2ac+a2

=2a2+2b2+2c2-2ab-2bc-2ac

=a2+b2+c2-ab-bc-ac

=左边;

2)解:当a=2018b=2019c=2020时,原式= [a-b2+b-c2+c-a2]

=×1+1+4

=3

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】任丘市举办一场中学生乒乓球比赛,比赛的费用y(元)包括两部分:一部分是租用比赛场地等固定不变的费用b(元),另一部分费用与参加比赛的人数(x)人成正比.当x20时,y1600;当x30时,y2000

1)求yx之间的函数关系式;

2)如果承办此次比赛的组委会共筹集;经费6350元,那么这次比赛最多可邀请多少名运动员参赛?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线的对称轴是,下列结论:

;②;③;④;⑤

其中正确的结论有________(填上正确结论的序号).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】等腰RtACB,∠ACB90°,ACBC,点AC分别在x轴、y轴的正半轴上.

1)如图1,求证:∠BCO=∠CAO

2)如图2,若OA5OC2,求B点的坐标

3)如图3,点C03),QA两点均在x轴上,且SCQA18.分别以ACCQ为腰在第一、第二象限作等腰RtCAN、等腰RtQCM,连接MNy轴于P点,OP的长度是否发生改变?若不变,求出OP的值;若变化,求OP的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=x2-2x-3与x轴交于A、B两点,在x轴上方的抛物线上有一点C,且△ABC的面积等于10,则C点坐标为________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠BOC=9°,点AOB上,且OA=1,按下列要求画图:以A为圆心,1为半径向右画弧交OC于点A1,得第1条线段AA1;再以A1为圆心,1为半径向右画弧交OB于点A2,得第2条线段A1A2;再以A2为圆心,1为半径向右画弧交OC于点A3,得第3条线段A2A3…这样画下去,直到得第n条线段,之后就不能再画出符合要求的线段了,则n=(  )

A. 10B. 9C. 8D. 7

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:

1a3aa29a2a4

2)﹣m2(﹣m24(﹣m3

3)(﹣82018×(﹣0.1252017

4)(﹣a2b2ab2+(﹣9a

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD是正方形,△ADF旋转一定角度后得到△ABE,且点E在线段AD上,若AF=4,F=60°.

(1)指出旋转中心和旋转角度;

(2)DE的长度和∠EBD的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1ABC中,ABAC,∠BAC90°CD平分∠ACBBECD,垂足ECD的延长线上.请解答下列问题:

1)图中与∠DBE相等的角有:   

2)直接写出BECD的数量关系;

3)若ABC的形状、大小不变,直角三角形BEC变为图2中直角三角形BED,∠E90°,且∠EDBCDEAB相交于点F.试探究线段BEFD的数量关系,并证明你的结论.

查看答案和解析>>

同步练习册答案