精英家教网 > 初中数学 > 题目详情

【题目】如图,在边长为8的正方形ABCD中,点O为AD上一动点4<OA<8,以O为圆心,OA的长为半径的圆交边CD于点M,连接OM,过点M作O的切线交边BC于N.

1图中是否存在与ODM相似的三角形,若存在,请找出并给予证明;

2设DM=x,OA=R,求R关于x的函数关系式;

3在动点O逐渐向点D运动OA逐渐增大的过程中,CMN的周长如何变化?说明理由.

【答案】1存在MCN与ODM相似,证明见矩形;

2R=

3CMN的周长是一个定值,理由见解析.

【解析】

试题1根据切线的性质得出OMN=90,从而证得OMD=MNC;则ODM∽△MCN;

2由DM=x,设OA=OM=R;则得出OD,由勾股定理得R与x的关系;

3可分为两种解法得出答案.由ODM∽△MCN,得,用含x的式子表示出CN,MN,从而得出CMN的周长是一个定值.

试题解析:1存在MCN与ODM相似,证明如下:

MN切O于点M,∴∠OMN=90°∵∠OMD+CMN=90°CMN+CNM=90°∴∠OMD=MNC,又∵∠D=C=90°∴△ODM∽△MCN.

2在RtODM中,DM=x,设OA=OM=R,OD=ADOA=8R,由勾股定理得:8R2+x2=R2

6416R+R2+x2=R2R=

3CM=CDDM=8x,OD=8R=8,且有ODM∽△MCN,代入得到:CN=

同理代入得到:MN=∴△CMN的周长=CM+CN+MN=8x++=8x+x+8=16,

在点O的运动过程中,CMN的周长始终为16,是一个定值.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=﹣x2+4x轴于点AB,交y轴于点C,连结ACBCD是线段OB上一动点,以CD为一边向右侧作正方形CDEF,连结BF,交DE于点P.

(1)试判断△ABC的形状,并说明理由;

(2)求证:BFAB.

(3)当点D从点O沿x轴正方向移动到点B时,点E所走过的路线长为______

(4)探究当点D在何处时,△FBC是等腰三角形,并求出相应的BF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】探究与发现:如图1所示的图形,像我们常见的学习用品--圆规.我们不妨把这样图形叫做规形图

1)观察规形图,试探究∠BDC与∠A、∠B、∠C之间的关系,并说明理由;

2)请你直接利用以上结论,解决以下三个问题:

①如图2,把一块三角尺XYZ放置在△ABC上,使三角尺的两条直角边XYXZ恰好经过点BC,∠A=40°,则∠ABX+ACX等于多少度;

②如图3DC平分∠ADBEC平分∠AEB,若∠DAE=40°,∠DBE=130°,求∠DCE的度数;

③如图4,∠ABD,∠ACD10等分线相交于点G1G2G9,若∠BDC=133°,∠BG1C=70°,求∠A的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等边ABC中,AD是BAC的角平分线,E为AD上一点,以BE为一边且在BE下方作等边BEF,连接CF.

(1)求证:AE=CF;

(2)求ACF的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】10分)一块材料的形状是锐角三角形ABC,边BC=120mm,高AD=80mm,把它加工成正方形零件如图1,使正方形的一边在BC上,其余两个顶点分别在ABAC上.

1)求证:△AEF∽△ABC

2)求这个正方形零件的边长;

3)如果把它加工成矩形零件如图2,问这个矩形的最大面积是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】等腰RtABC中,∠BAC=90°,点A、点B分别是y轴、x轴上的两个动点,点C在第三象限,直角边ACx轴于点D,斜边BCy轴于点E

1)若A01),B20),画出图形并求C点的坐标;

2)若点D恰为AC中点时,连接DE,画出图形,判断∠ADB和∠CDE大小关系,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线轴交于两点,,交双曲线点,且轴于点,,则________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】课本中有一道作业题:有一块三角形余料ABC,它的边BC=120mm,高AD=80mm.要把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB,AC上.

(1)加工成的正方形零件的边长是多少mm?

(2)如果原题中要加工的零件是一个矩形,且此矩形是由两个并排放置的正方形所组成,如图1,此时,这个矩形零件的两条边长又分别为多少?请你计算.

(3)如果原题中所要加工的零件只是一个矩形,如图2,这样,此矩形零件的两条边长就不能确定,但这个矩形面积有最大值,求达到这个最大值时矩形零件的两条边长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】周末,小华和小亮想用所学的数学知识测量家门前小河的宽.测量时,他们选择了河对岸边的一棵大树,将其底部作为点A,在他们所在的岸边选择了点B,使得AB与河岸垂直,并在B点竖起标杆BC,再在AB的延长线上选择点D竖起标杆DE,使得点E与点CA共线.

已知:CBADEDAD,测得BC=1mDE=1.5m,BD=8.5m.测量示意图如图所示.请根据相关测量信息,求河宽AB

查看答案和解析>>

同步练习册答案