【题目】如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣2,与x轴的一个交点在(﹣3,0)和(﹣4,0)之间,其部分图象如图所示则下列结论:①4a﹣b=0;②c<0;③c>3a;④4a﹣2b>at2+bt(t为实数);⑤点(﹣,y1),(﹣,y2),()是该抛物线上的点,则y2<y1<y3,其中,正确结论的个数是( )
A. 1B. 2C. 3D. 4
【答案】C
【解析】
根据抛物线的对称轴可判断①;由抛物线与x轴的交点及抛物线的对称性可判断②;由x=﹣1时y>0可判断③,由x=﹣2时函数取得最大值可判断④;根据抛物线的开口向下且对称轴为直线x=﹣2知图象上离对称轴水平距离越小函数值越大,可判断⑤.
∵抛物线的对称轴为直线x=﹣2,
∴4a﹣b=0,所以①正确;
∵与x轴的一个交点在(﹣3,0)和(﹣4,0)之间,
∴由抛物线的对称性知,另一个交点在(﹣1,0)和(0,0)之间,
∴抛物线与y轴的交点在y轴的负半轴,即c<0,故②正确;
∵由②知,x=﹣1时y>0,且b=4a,
即a﹣b+c=a﹣4a+c=﹣3a+c>0,
所以③正确;
由函数图象知当x=﹣2时,函数取得最大值,
∴4a﹣2b+c≥at2+bt+c,
即4a﹣2b≥at2+bt(t为实数),故④错误;
∵抛物线的开口向下,且对称轴为直线x=﹣2,
∴抛物线上离对称轴水平距离越小,函数值越大,
∴y2>y1>y3,故⑤错误;
故选:C.
科目:初中数学 来源: 题型:
【题目】现需了解2019年各月份中5至14日广州市每天最低气温的情况:图①是3月份的折线统计图.(数据来源于114天气网)
(1)图②是3月份的频数分布直方图,根据图①提供的信息,补全图②中的频数分布直方图;
(2)3月13日与10日这两天的最低气温之差是 ℃;
(3)图③是5月份的折线统计图.用表示5月份的方差;用表示3月份的方差,比较大小: ;比较3月份与5月份, 月份的更稳定.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】设中学生体质健康综合评定成绩为x分,满分为100分,规定:85≤x≤100为A级,75≤x≤85为B级,60≤x≤75为C级,x<60为D级.现随机抽取某中学部分学生的综合评定成绩,整理绘制成如下两幅不完整的统计图,请根据图中的信息,解答下列问题:
(1)在这次调查中,一共抽取了 名学生,α= %;
(2)补全条形统计图;
(3)扇形统计图中C级对应的圆心角为 度;
(4)若A级由2个男生参加自主考试,B级由1个女生参加自主考试,刚好有一男一女考取名校,请用树状图或列表法求他们的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,E是AB边的中点,沿EC对折矩形ABCD,使B点落在点P处,折痕为EC,连接AP并延长AP交CD于F点,连接BP.
(1)求证:四边形AECF为平行四边形;
(2)若BC= AB,判断△ABP的形状,并证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某部门为了解工人的生产能力情况,进行了抽样调查.该部门随机抽取了20名工人某天每人加工零件的个数,数据如下:整理上面数据,得到条形统计图;样本数据的平均数、众数、中位数如表所示:
统计量 | 平均数 | 众数 | 中位数 |
数值 | 19.2 | m | n |
根据以上信息,解答下列问题:
(1)上表中m、n的值分别为 , ;
(2)为调动积极性,该部门根据工人每天加工零件的个数制定了奖励标准,凡达到或超过这个标准的工人将获得奖励.如果想让60%左右的工人能获奖,应根据 来确定奖励标准比较合适(填“平均数”、“众数”或“中位数”);
(3)该部门规定:每天加工零件的个数达到或超过21个的工人为生产能手若该部门有300名工人,试估计该部门生产能手的人数;
(4)现决定从小王、小张、小李、小刘中选两人参加业务能手比赛,直接写出恰好选中小张、小李两人的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读材料:
小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如.善于思考的小明进行了以下探索:
设(其中、、、均为整数),则有.
,.这样小明就找到了一种把类似的式子化为平方式的方法.
请你仿照小明的方法探索并解决下列问题:
(1)当、、、均为正整数时,若,用含、的式子分别表示、,得: , ;
(2)利用所探索的结论,找一组正整数、、、填空: ;
(3)若,且、、均为正整数,求的值?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知⊙O是△ABC的外接圆,AB是⊙O的直径,点D是AB延长线上的一点,AE⊥DC交DC的延长线于点E,AC平分∠DAE.
(1)DE与⊙O有何位置关系?请说明理由.
(2)若AB=6,CD=4,求CE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】综合与实践
(1)(探索发现)
在△ABC中,AC=BC,∠ACB=a,点D为直线BC上一动点(点D不与点B,C重合),过点D作DF∥AC交直线AB于点F,将AD绕点D顺时针旋转a得到ED,连接BE,如图(1),当点D在线段BC上,且a=90°时,试猜想:
①AF与BE之间的数量关系: ;
②∠ABE= .
(2)(拓展探究)
如图(2),当点D在线段BC上,且0°<a<90°时,判断AF与BE之间的数量关系及∠ABE的度数,请说明理由.
(3)(解决问题)
如图(3),在△ABC中,AC=BC,AB=4,∠ACB=a,点D在射线BC上,将AD绕点D顺时针旋转a得到ED,连接BE.当BD=3CD时,请直接写出BE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图在平行四边形ABCD中,CD=2AD,BE⊥AD,点F为DC中点,连接EF、BF,下列结论:①∠ABC=2∠ABF;②EF=BF;③S四边形DEBC=2S△EFB;④∠CFE=3∠DEF,其中正确的有_____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com