精英家教网 > 初中数学 > 题目详情

【题目】如图,在 中, ,tan ,AB=6cm.动点P从点A开始沿边AB向点B以1 cm/s的速度移动,动点Q从点B开始沿边BC向点C以2cm/s的速度移动.若P,Q两点分别从A,B两点同时出发,在运动过程中, 的最大面积是( )

A.18cm2
B.12cm2
C.9cm2
D.3cm2

【答案】C
【解析】∵tan∠C= ,AB=6cm,

∴BC=8,

由题意得:AP=t,BP=6-t,BQ=2t,

设△PBQ的面积为S,则S= ×BP×BQ= ×2t×(6-t),S=-t2+6t=-(t2-6t+9-9)=-(t-3)2+9,P:0≤t≤6,Q:0≤t≤4,

∴当t=3时,S有最大值为9,即当t=3时,△PBQ的最大面积为9cm2

所以答案是:C.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】19届亚运会将于2022年在杭州举行,“丝绸细节”助力杭州打动世界.杭州丝绸公司为亚运会设计手工礼品,投入元钱,若以2条领带和1条丝巾为一份礼品,则刚好可制作600份礼品;若以1条领带和3条丝巾为一份礼品,则刚好可制作400份礼品.

1)若万元,求领带及丝巾的制作成本是多少?

2)若用元钱全部用于制作领带,总共可以制作几条?

3)若用元钱恰好能制作300份其他的礼品,可以选择条领带和条丝巾作为一份礼品(两种都要有),请求出所有可能的的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】完成下列证明过程,并在括号内填上依据.

如图,点EAB上,点FCD上,∠1=∠2,∠B=∠C,求证ABCD

证明:∵∠1=∠2(已知),∠1=∠4   ),

∴∠2   (等量代换),

   BF   ),

∴∠3=∠      ).

又∵∠B=∠C(已知),

∴∠3=∠B   ),

ABCD   ).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,某建筑物AC顶部有一旗杆AB,且点A,B,C在同一条直线上,小明在地面D处观测旗杆顶端B的仰角为30°,然后他正对建筑物的方向前进了20米到达地面的E处,又测得旗杆顶端B的仰角为60°,已知建筑物的高度AC=12m,求旗杆AB的高度(结果精确到0.1米).参考数据: ≈1.73, ≈1.41.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了响应“足球进校园”的目标,某校计划为学校足球队购买一批足球,已知购买2个A品牌的足球和3个B品牌的足球共需380元;购买4个A品牌的足球和2个B品牌的足球共需360元.

(1)求A,B两种品牌的足球的单价.
(2)求该校购买20个A品牌的足球和2个B品牌的足球的总费用.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知函数=-x24x5x4,若无论 x取何值,y 总取 中的最大值,则 y的最小值是_________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】对于一组数据﹣1、4、﹣1、2下列结论不正确的是( )
A.平均数是1
B.众数是-1
C.中位数是0.5
D.方差是3.5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数 的图象与 轴交于 (1, 0), 两点,与 轴交于点 ,其顶点 的坐标为(-3, 2).

(1)求这二次函数的关系式;
(2)求 的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=-x2-2x+3的图象与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,点D为抛物线的顶点.

(1)求点A、B、C的坐标;
(2)点M为线段AB上一点(点M不与点A、B重合),过点M作x轴的垂线,与直线AC交于点E,与抛物线交于点P,过点P作PQ∥AB交抛物线于点Q,过点Q作QN⊥x轴于点N,若点P在点Q左边,当矩形PMNQ的周长最大时,求△AEM的面积;
(3)在(2)的条件下,当矩形PMNQ的周长最大时,连接DQ,过抛物线上一点F作y轴的平行线,与直线AC交于点G(点G在点F的上方).若, 求点F的坐标.

查看答案和解析>>

同步练习册答案