【题目】如图,□ABCD的对角线相交于点O,将线段OD绕点O旋转,使点D的对应点落在BC延长线上的点E处,OE交CD于H,连接DE.
(1)求证:DE⊥BC;
(2)若OE⊥CD,求证:2CE·OE=CD·DE;
(3)若OE⊥CD,BC=3,CE=1,求线段AC的长.
【答案】(1)证明见解析;(2)证明见解析;(3)
【解析】(1)由平行四边形的性质得到BO=BD,根据平行四边形的判定即可得到结论;(2)根据等角的余角相等,得到∠CEO=∠CDE,推出△CDE∽△DBE,即可得到结论;
(3)由第二问所得的相似求出DE,再由勾股定理求出AC即可.
解:(1)证明:由旋转可知OE=OD,∴∠ODE=∠OED
∵四边形ABCD是平行四边形,∴OB=OD,OA=OC
∴OB=OE,∴∠OEB=∠OBE
∵∠BDE+∠DBE+∠BED=180°,∴∠ODE+∠OED+∠OEB+∠OBE=180°
∴∠OED+∠OEB=90°,即∠DEB=90°,∴BC⊥CD
(2)∵OE⊥CD,∴∠CHE=90°,∴∠CDE+∠OED=90°
∵∠OED+∠OEB=90°,∴∠CDE=∠OEB
∵∠OEB=∠OBE,∴∠CDE=∠OBE
∵∠CDE=∠OBE,∠CED=∠DEB,∴△CDE∽△DBE
∴,即CE·BD=CD·DE
∵OE=OD,OB=OD,BD=OB+OD,∴BD=2OE
∴2CE·OE=CD·DE
(3)∵BC=3,CE=1,∴BE=4
由(2)知,△CDE∽△DBE
∴,即DE2=CE·BE=4,∴DE=2
过点O作OF⊥BE,垂足为F
∵OB=OE,∴BF=EF=BE=2,∴CF=EF-CE=1
∵OB=OD,BE=EF,∴OF=DE=1
在Rt△OCF中,
∴AC=2OC=
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,点A、B的坐标分别为(a,0),(0,b),其中a,b满足 +|2a﹣5b﹣30|=0.将点B向右平移26个单位长度得到点C,如图①所示.
(1)求点A,B,C的坐标;
(2)点M,N分别为线段BC,OA上的两个动点,点M从点C向左以1.5个单位长度/秒运动,同时点N从点O向点A以2个单位长度/秒运动,如图②所示,设运动时间为t秒(0<t<15).
①当CM<AN时,求t的取值范围;
②是否存在一段时间,使得S四边形MNOB>2S四边形MNAC?若存在,求出t的取值范围;若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“宜居襄阳”是我们的共同愿景,空气质量备受人们关注.我市某空气质量监测站点检测了该区域每天的空气质量情况,统计了2013年1月份至4月份若干天的空气质量情况,并绘制了如下两幅不完整的统计图.
请根据图中信息,解答下列问题:
(1)统计图共统计了 天的空气质量情况;
(2)请将条形统计图补充完整;空气质量为“优”所在扇形的圆心角度数是 ;
(3)从小源所在环保兴趣小组4名同学(2名男同学,2名女同学)中,随机选取两名同学去该空气质量监测站点参观,则恰好选到一名男同学和一名女同学的概率是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】把弯曲的河道改成直的,可以缩短航程,其理由是( )
A. 经过两点有且只有一条直线
B. 两点之间,线段最短
C. 两点之间,直线最短
D. 线段可以比较大小
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,把点P(﹣5,3)向右平移8个单位得到点P1 , 再将点P1绕原点旋转90°得到点P2 , 则点P2的坐标是( )
A.(3,﹣3)
B.(﹣3,3)
C.(3,3)或(﹣3,﹣3)
D.(3,﹣3)或(﹣3,3)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形OABC的两边OA、OC分别在x轴、y轴上,点D(5,3)在边AB上,以C为中心,把△CDB旋转90°,则旋转后点D的对应点D′的坐标是 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com