【题目】如图,在正方形ABCD中,点E是BC的中点,将△ABE沿AE折叠后得到△AFE,点F在正方形ABCD的内部,延长AF交CD于点G.
(1)猜想并证明线段GF与GC的数量关系;
(2)若将图1中的正方形改成矩形,其它条件不变,如图2,那么线段GF与GC之间的数量关系是否改变?请证明你的结论;
(3)若将图1中的正方形改成平行四边形,其它条件不变,如图3,那么线段GF与GC之间的数量关系是否会改变?请证明你的结论.
【答案】
(1)
解:FG=CG,理由如下:
∵E是BC的中点
∴BE=CE
∵将△ABE沿AE折叠后得到△AFE
∴BE=EF,
∴EF=EC;
同样,在折叠中,∠B=∠EFA=90°
又∵∠C=∠B,∠EFG=∠EFA
∴∠C=∠EFG=90°
∵EG=EG,
∴△ECG≌△EFG
∴FG=CG
(2)
解:不会改变.
证明:连接EG
∵E是BC的中点
∴BE=CE
∵将△ABE沿AE折叠后得到△AFE
∴BE=EF,
∴EF=EC;
同样,在折叠中,∠B=∠EFA=90°
又∵∠C=∠B,∠EFG=∠EFA
∴∠C=∠EFG=90°
∵EG=EG,
∴△ECG≌△EFG
∴FG=CG;
(3)
解:不会改变.
证明:连接EG、FC
∵E是BC的中点
∴BE=CE
∵将△ABE沿AE折叠后得到△AFE
∴BE=EF,∠B=∠AFE
∴EF=EC
∴∠EFC=∠ECF
∵矩形ABCD改为平行四边形
∴∠B=∠D
∵∠ECD=180°﹣∠D,∠EFG=180°﹣∠AFE=180°﹣∠B=180°﹣∠D
∴∠ECD=∠EFG
∴∠GFC=∠GFE﹣∠EFC=∠ECG﹣∠ECF=∠GCF
∴∠GFC=∠GCF
∴△ECG≌△EFG
∴FG=CG
即(1)中的结论仍然成立
【解析】(1)判定直角三角形△ECG和△EFG全等,和全等三角形对应边相等的性质;(2)判定直角三角形△ECG和△EFG全等,和全等三角形对应边相等的性质;(3)判定△ECG和△EFG全等,根据全等三角形对应边相等性质即可证明.
科目:初中数学 来源: 题型:
【题目】某商店卖出一套衣服,亏损了元,其中裤子是按元卖出的,盈利了 ;上衣亏损了.求:
(1)这套衣服中裤子的进价是多少元?
(2)这套衣服中上衣是按多少元卖出的?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,四边形ABCD是正方形,M是AB延长线上一点.直角三角尺的一条直角边经过点D,且直角顶点E在AB边上滑动(点E不与点A、B重合),另一直角边与∠CBM的平分线BF相交于点F.
(1)如图1,当点E在AB边得中点位置时:
①通过测量DE、EF的长度,猜想DE与EF满足的数量关系是 .
②连接点E与AD边的中点N,猜想NE与BF满足的数量关系是 ,请证明你的猜想.
(2)如图2,当点E在AB边上的任意位置时,猜想此时DE与EF有怎样的数量关系,并证明你的猜想.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(11·柳州)在平面直角坐标系中,将点A (-2,1)向左平移2个单位到点Q,则点Q的坐标为
A.(-2,3)B.(0,1)C.(-4,1)D.(-4,-1)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com