精英家教网 > 初中数学 > 题目详情

【题目】观察下列一组图形,其中图形①中共有2颗星,图形②中共有6颗星,图形③中共有11颗星,图形④中共有17颗星,…,按此规律,图形⑧中星星的颗数是(  )

A.43
B.45
C.51
D.53

【答案】C
【解析】解:设图形n中星星的颗数是an(n为自然是),
观察,发现规律:a1=2,a2=6=a1+3+1,a3=11=a2+4+1,a4=17=a3+5+1,…,
∴an=2+ .令n=8,则a8=2+ =51.
故选C.
设图形n中星星的颗数是an(n为自然是),列出部分图形中星星的个数,根据数据的变化找出变化规律“an=2+ ”,结合该规律即可得出结论.本题考查了规律型中的图形的变化类,解题的关键是找出变化规律“an=2+ ”.本题属于中档题,难度不大,解决该题型题目时,根据给定条件列出部分数据,根据数据的变化找出变化规律是关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,某大楼的顶部树有一块广告牌CD,小李在山坡的坡脚A处测得广告牌底部D的仰角为60°.沿坡面AB向上走到B处测得广告牌顶部C的仰角为45°,已知山坡AB的坡度i=1: ,AB=10米,AE=15米.(i=1: 是指坡面的铅直高度BH与水平宽度AH的比)

(1)求点B距水平面AE的高度BH;
(2)求广告牌CD的高度.
(测角器的高度忽略不计,结果精确到0.1米.参考数据: 1.414, 1.732)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,一蚂蚁从原点O出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位.其行走路线如图.

(1)填写下列各点的坐标:A4 ),A8 );

(2)点A4n1的坐标(n是正整数)为

(3)指出蚂蚁从点A2013到点A2014的移动方向.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】【操作发现】在计算器上输入一个正数,不断地按“ ”键求算术平方根,运算结果越来越接近1或都等于1.
【提出问题】输入一个实数,不断地进行“乘以常数k,再加上常数b”的运算,有什么规律?
【分析问题】我们可用框图表示这种运算过程(如图a).
也可用图象描述:如图1,在x轴上表示出x1 , 先在直线y=kx+b上确定点(x1 , y1),再在直线y=x上确定纵坐标为y1的点(x2 , y1),然后再x轴上确定对应的数x2 , …,以此类推.
【解决问题】研究输入实数x1时,随着运算次数n的不断增加,运算结果x,怎样变化.

(1)若k=2,b=﹣4,得到什么结论?可以输入特殊的数如3,4,5进行观察研究;
(2)若k>1,又得到什么结论?请说明理由;
(3)①若k=﹣ ,b=2,已在x轴上表示出x1(如图2所示),请在x轴上表示x2 , x3 , x4 , 并写出研究结论;
②若输入实数x1时,运算结果xn互不相等,且越来越接近常数m,直接写出k的取值范围及m的值(用含k,b的代数式表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】数学活动课上,某学习小组对有一内角为120°的平行四边形ABCD(∠BAD=120°)进行探究:将一块含60°的直角三角板如图放置在平行四边形ABCD所在平面内旋转,且60°角的顶点始终与点C重合,较短的直角边和斜边所在的两直线分别交线段AB,AD于点E,F(不包括线段的端点).

(1)初步尝试
如图1,若AD=AB,求证:①△BCE≌△ACF,②AE+AF=AC;
(2)类比发现
如图2,若AD=2AB,过点C作CH⊥AD于点H,求证:AE=2FH;
(3)深入探究
如图3,若AD=3AB,探究得: 的值为常数t,则t=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小李用围棋子排成下列一组有规律的图案,其中第1个图案有1枚棋子,第2个图案有3枚棋子,第3个图案有4枚棋子,第4个图案有6枚棋子,…,那么第9个图案的棋子数是枚.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC内部的一个动点,且满足∠PAB=∠PBC,则线段CP长的最小值为(  )

A.
B.2
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图:已知在△ABC中,AB=AC,DBC边的中点,过点DDEAB,DFAC,垂足分别为E,F.

(1)求证:DE=DF;

(2)若∠A=60°,BE=1,求△ABC的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了落实省新课改精神,我是各校都开设了“知识拓展类”、“体艺特长类”、“实践活动类”三类拓展性课程,某校为了解在周二第六节开设的“体艺特长类”中各门课程学生的参与情况,随机调查了部分学生作为样本进行统计,绘制了如图所示的统计图(部分信息未给出)
根据图中信息,解答下列问题:
(1)求被调查学生的总人数;
(2)若该校有200名学生参加了“体艺特长类”中的各门课程,请估计参加棋类的学生人数;
(3)根据调查结果,请你给学校提一条合理化建议.

查看答案和解析>>

同步练习册答案