精英家教网 > 初中数学 > 题目详情

【题目】如图ABCAm°,ABC和∠ACD的平分线相交于点A1得∠A1A1BC和∠A1CD的平分线相交于点A2得∠A2;…;A2018BC和∠A2018CD的平分线交于点A2019则∠A2019________度.

【答案】

【解析】

根据角平分线的定义可得∠A1BC=ABC,A1CD=ACD,再根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ACD=A+ABC,A1CD=A1+A1BC,然后整理得到∠A1=A;

∵∠ABC与∠ACD的平分线交于点A1

∴∠A1BC=ABC,A1CD=ACD,

由三角形的外角性质,∠ACD=A+ABC,

A1CD=A1+A1BC,A+ABC)=A1+A1BC=A1+ABC,

整理得,∠A1=A=×m°=°;

同理可得∠An=()n×m,

所以∠A2019=()2019×m=.

故答案是:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】阅读下面材料:

在数学课上,老师提出如下问题:

如图1,P,Q是直线l同侧两点,请你在直线l上确定一个点R,使△PQR的周长最小.

小阳的解决方法如下:

如图2,

(1)作点Q关于直线l的对称点Q;

(2)连接PQ′交直线l于点R;

(3)连接RQ,PQ.

所以点R就是使△PQR周长最小的点.

老师说:“小阳的作法正确.”

请回答:小阳的作图依据是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线y=(x﹣m)2﹣(x﹣m),其中m是常数.
(1)求证:不论m为何值,该抛物线与x轴一定有两个公共点;
(2)若该抛物线的对称轴为直线x= . ①求该抛物线的函数解析式;
②把该抛物线沿y轴向上平移多少个单位长度后,得到的抛物线与x轴只有一个公共点.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的边长为3,点E,F分别在边AB,BC上,AE=BF=1,小球P从点E出发沿直线向点F运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角.当小球P第一次碰到点E时,小球P与正方形的边碰撞的次数为 , 小球P所经过的路程为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内时,∠A与∠1+∠2之间有始终不变的关系是(  )

A. ∠A=∠1+∠2 B. 2∠A=∠1+∠2 C. 3∠A=∠1+∠2 D. 3∠A=2(∠1+∠2)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】了解学生零花钱的使用情况,校团委随机调查了本校部分学生每人一周的零花钱数额,并绘制了如图甲、乙所示的两个统计图(部分未完成).请根据图中信息,回答下列问题:

(1)校团委随机调查了多少学生?请你补全条形统计图;
(2)表示“50元”的扇形的圆心角是多少度?被调查的学生每人一周零花钱数的中位数是多少元?
(3)四川雅安地震后,全校1000名学生每人自发地捐出一周零花钱的一半,以支援灾区建设.请估算全校学生共捐款多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某镇水库的可用水量为12000万立方米,假设年降水量不变,能维持该镇16万人20年的用水量.实施城市化建设,新迁入4万人后,水库只够维持居民15年的用水量.
(1)问:年降水量为多少万立方米?每人年平均用水量多少立方米?
(2)政府号召节约用水,希望将水库的保用年限提高到25年,则该镇居民人均每年需节约多少立方米才能实现目标?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将△ABC绕点A按逆时针方向旋转θ度,并使各边长变为原来的n倍,得△AB′C′,即如图①,我们将这种变换记为[θ,n].

(1)如图①,对△ABC作变换[60°, ]得△AB′C′,则SAB′C′:SABC=;直线BC与直线B′C′所夹的锐角为度;
(2)如图②,△ABC中,∠BAC=30°,∠ACB=90°,对△ABC 作变换[θ,n]得△AB′C′,使点B、C、C′在同一直线上,且四边形ABB'C'为矩形,求θ和n的值;
(3)如图③,△ABC中,AB=AC,∠BAC=36°,BC=1,对△ABC作变换[θ,n]得△AB′C′,使点B、C、B′在同一直线上,且四边形ABB′C′为平行四边形,求θ和n的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】射线QN与等边△ABC的两边AB,BC分别交于点M,N,且AC∥QN,AM=MB=2cm,QM=4cm.动点P从点Q出发,沿射线QN以每秒1cm的速度向右移动,经过t秒,以点P为圆心, cm为半径的圆与△ABC的边相切(切点在边上),请写出t可取的一切值(单位:秒)

查看答案和解析>>

同步练习册答案