【题目】某大学生创业团队抓住商机,购进一批干果分装成营养搭配合理的小包装后出售,每袋成本3元.试销期间发现每天的销售量y(袋)与销售单价x(元)之间满足一次函数关系,部分数据如表所示,其中3.5≤x≤5.5,另外每天还需支付其他费用80元.
销售单价x(元) | 3.5 | 5.5 |
销售量y(袋) | 280 | 120 |
(1)请求出y与x之间的函数关系式.
(2)设每天的利润为w元,当销售单价定为多少元时,每天的利润最大?最大利润是多少元?
(3)如果每天获得不低于160元的利润,销售单价范围是多少?至少出售多少袋?
【答案】(1)y=﹣80x+560;(2)当销售单价定为5元时,每天的利润最大,最大利润是240元;(3)当x=5.5时,y=﹣80x+560最小为:120袋.
【解析】
(1)根据每天的销售量y(袋)与销售单价x(元)之间满足一次函数关系,可设y=kx+b,再将x=3.5,y=280;x=5.5,y=120代入,利用待定系数法即可求解;
(2)根据每天的利润=每天每袋的利润×销售量﹣每天还需支付的其他费用,列出w关于x的函数解析式,再根据二次函数的性质即可求解;
(3)根据每天获得160元的利润列出方程(x﹣3)(﹣80x+560)﹣80=160,解方程并结合3.5≤x≤5.5即可求解.
解:(1)设y=kx+b,
将x=3.5,y=280;x=5.5,y=120代入,
得,
解得:,
则y与x之间的函数关系式为y=﹣80x+560;
(2)由题意得:w=(x﹣3)(﹣80x+560)﹣80
=﹣80x2+800x﹣1760
=﹣80(x﹣5)2+240,
∵3.5≤x≤5.5,
∴当x=5时,w有最大值为240.
故当销售单价定为5元时,每天的利润最大,最大利润是240元;
(3)由题意,得(x﹣3)(﹣80x+560)﹣80=160,
整理,得x2﹣10x+24=0,
解得:x1=4,x2=6.
∵3.5≤x≤5.5,
∴4≤x≤5.5,
当x=5.5时,y=﹣80x+560最小为:120袋.
科目:初中数学 来源: 题型:
【题目】如图,Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点B出发,在BA边上以每秒5cm的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4cm的速度向点B匀速运动,运动时间为t秒(0<t<2),连接PQ.
(1)若△BPQ与△ABC相似,求t的值;
(2)连接AQ、CP,若AQ⊥CP,求t的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD中,M为BC上一点,F是AM的中点,EF⊥AM,垂足为F,交AD的延长线于点E,交DC于点N.
(1)求证:△ABM∽△EFA;
(2)若AB=12,BM=5,求DE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】5G时代即将来临,湖北省提出“建成全国领先、中部一流5G网络”的战略目标.据统计,目前湖北5G基站的数量有1.5万座,计划到2020年底,全省5G基站数是目前的4倍,到2022年底,全省5G基站数量将达到17.34万座.
(1)按照计划,求2020年底到2022年底,全省5G基站数量的年平均增长率;
(2)若2023年保持前两年5G基站数量的年平均增长率不变,到2023年底,全省5G基站数量能否超过29万座?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】从三角形(不是等腰三角形)一个顶点引出一条射线于对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.
(1)如图1,在△ABC中,CD为角平分线,∠A=40°,∠B=60°,求证:CD为△ABC的完美分割线.
(2)在△ABC中,∠A=48°,CD是△ABC的完美分割线,且△ACD为等腰三角形,求∠ACB的度数.
(3)如图2,△ABC中,AC=2,BC=,CD是△ABC的完美分割线,且△ACD是以CD为底边的等腰三角形,求完美分割线CD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为积极响应新旧动能转换.提高公司经济效益.某科技公司近期研发出一种新型高科技设备,每台设备成本价为30万元,经过市场调研发现,每台售价为40万元时,年销售量为600台;每台售价为45万元时,年销售量为550台.假定该设备的年销售量y(单位:台)和销售单价(单位:万元)成一次函数关系.
(1)求年销售量与销售单价的函数关系式;
(2)根据相关规定,此设备的销售单价不得高于70万元,如果该公司想获得10000万元的年利润.则该设备的销售单价应是多少万元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若二次函数y=kx2+(3k+2)x+2k+2.
(1)求证:抛物线与x轴有交点.
(2)经研究发现,无论k为何值,抛物线经过某些特定的点,请求出这些定点.
(3)若y1=2x+2,在﹣2<x<﹣1范围内,请比较y1,y的大小.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,矩形的顶点,的坐标分别为(2,0),(0,3) ,抛物线:经过,两点.抛物线的顶点为.
(1)求抛物线的表达式和点的坐标;
(2)点是抛物线对称轴上一动点,当为等腰三角形时,求所有符合条件的点的坐标;
(3)如图2,现将抛物线进行平移,保持顶点在直线上,若平移后的抛物线与射线只有一个公共点.设平移后抛物线的顶点横坐标为,求的值或取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com