【题目】如图,一座堤坝的横断面为梯形,AD∥BC,AB坡坡角为45°,DC坡坡度为1:2,其他数据如图所示,求BC的长.(结果保留根号)
【答案】BC的长是(6+6)m.
【解析】
根据题意可以作辅助线AE⊥BC,作DF⊥BC,然后根据AB坡坡角为45°,DC坡坡度为1:2和题目中的数据可以分别求得CF和BE的长,从而可以求得BC的长.
解:作AE⊥BC于点E,作DF⊥BC于点F,如下图所示,
由题意可得,
tan∠C=,CD=10m,∠B=45°,AD=6m,
∵AE⊥BC,DF⊥BC,
∴∠AEB=∠DFC=90°,AE=DF,
设DF=x,则CF=2x,
∴=102,
解得,x=2,
∴DF=2m,CF=4m,AE=2m,
∵∠AEB=90°,∠ABE=45°,AE=2m,
∴BE=2m,
∴BC=BE+EF+CF=2+6+4=(6+6)m,
即BC的长是(6+6)m.
科目:初中数学 来源: 题型:
【题目】如图,在菱形ABCD中,P是对角线AC上的一点,连结DP并延长交AB于点E,交CB的延长线于点F.若DP=3,EF=,则PE的长是( )
A. B. C. 2 D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】.如图,在RT△ABC中,∠C=90°,BC=8,AC=6,动点Q从B点开始在线段BA上以每秒2个单位长度的速度向点A移动,同时点P从A点开始在线段AC上以每秒1个单位长度的速度向点C移动.当一点停止运动,另一点也随之停止运动.设点Q,P移动的时间为t秒.当t=____________ 秒时△APQ与△ABC相似.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知抛物线与x轴交于A(-1,0),B(3,0)两点,与y轴交于点C.
(1)求该抛物线的解析式;
(2)如图①,若点D是抛物线上一动点,设点D的横坐标为m(0<m<3),连接CD,BD,BC,AC,当△BCD的面积等于△AOC面积的2倍时,求m的值;
(3)若点N为抛物线对称轴上一点,请在图②中探究抛物线上是否存在点M,使得以B,C,M,N为顶点的四边形是平行四边形?若存在,请直接写出所有满足条件的点M的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,二次函数的图象交x轴于点A,B(点A在点B的左侧).
(1)求点A,B的坐标,并根据该函数图象写出y≥0时x的取值范围;
(2)把点B向上平移m个单位得点B1.若点B1向左平移n个单位,将与该二次函数图象上的点B2重合;若点B1向左平移(n+6)个单位,将与该二次函数图象上的点B3重合.已知m>0,n>0,求m,n的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某大学生创业团队抓住商机,购进一批干果分装成营养搭配合理的小包装后出售,每袋成本3元.试销期间发现每天的销售量y(袋)与销售单价x(元)之间满足一次函数关系,部分数据如表所示,其中3.5≤x≤5.5,另外每天还需支付其他费用80元.
销售单价x(元) | 3.5 | 5.5 |
销售量y(袋) | 280 | 120 |
(1)请求出y与x之间的函数关系式.
(2)设每天的利润为w元,当销售单价定为多少元时,每天的利润最大?最大利润是多少元?
(3)如果每天获得不低于160元的利润,销售单价范围是多少?至少出售多少袋?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若A(-3,y1)、B(-1,y2)、C(1,y3)三点都在反比例函数y=(k>0)的图象上,则y1、y2、y3的大小关系是( )
A. y1>y2>y3B. y3>y1>y2C. y3>y2>y1D. y2>y1>y3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的一元二次方程x2﹣(2k+1)x+4k﹣3=0,
(1)求证:无论k取什么实数值,该方程总有两个不相等的实数根?
(2)当Rt△ABC的斜边a=,且两条直角边的长b和c恰好是这个方程的两个根时,求k的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,给出如下定义:若点P在图形M上,点Q在图形N上,称线段PQ长度的最小值为图形M,N的密距,记为d(M,N).特别地,若图形M,N有公共点,规定d(M,N)=0.
(1)如图1,⊙O的半径为2,
①点A(0,1),B(4,3),则d(A,⊙O)= ,d(B,⊙O)= .
②已知直线L:y=与⊙O的密距d(L,⊙O)=,求b的值.
(2)如图2,C为x轴正半轴上一点,⊙C的半径为1,直线y=﹣与x轴交于点D,与y轴交于点E,直线DE与⊙C的密距d(DE,⊙C).请直接写出圆心C的横坐标m的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com