精英家教网 > 初中数学 > 题目详情

【题目】A-3y1)、B-1y2)、C1y3)三点都在反比例函数y=k0)的图象上,则y1y2y3的大小关系是(

A. y1y2y3B. y3y1y2C. y3y2y1D. y2y1y3

【答案】B

【解析】

反比例函数y=k0)的图象在一、三象限,根据反比例函数的性质,在每个象限内yx的增大而减小,而A-3y1)、B-1y2)在第三象限双曲线上的点,可得y2y10C1y3)在第一象限双曲线上的点y30,于是对y1y2y3的大小关系做出判断.

∵反比例函数y=k0)的图象在一、三象限,
∴在每个象限内yx的增大而减小,
A-3y1)、B-1y2)在第三象限双曲线上,
y2y10
C1y3)在第一象限双曲线上,
y30
y3y1y2
故选:B

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某文具商店销售学习用品,已知某品牌钢笔的进价是20元,销售过程发现,每月销量y支与销售单价x元(x为正整数)之间满足一次函数关系,且每支钢笔的售价不低于进价,也不高于35元,下表是yx之间的对应数据:

销售单价x(元)

22

24

30

月销量y(只)

92

84

60

1)求yx的函数关系式并直接写出自变量x的取值范围.

2)每支钢笔的售价定为多少元时,月销售利润恰为600元?

3)每支钢笔的售价定为多少元时可使月销售利润最大?最大的月利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,O为坐标原点,ABCD的边ABx轴上,顶点Dy轴的正半轴上,点C在第一象限.将△AOD沿y轴翻折,使点A落在x轴上的点E处,点B恰好为OE的中点,DEBC交于点F.若y(k≠0)图象经过点C,且SBEF,则k的值为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】建立模型:如图1,已知ABCAC=BCC=90°,顶点C在直线l上.

实践操作:过点AADl于点D,过点BBEl于点E,求证:CADBCE

模型应用:(1)如图2,在直角坐标系中,直线l1y=x+4y轴交于点A,与x轴交于点B,将直线l1绕着点A顺时针旋转45°得到l2.求l2的函数表达式.

(2)如图3,在直角坐标系中,点B(86),作BAy轴于点A,作BCx轴于点CP是线段BC上的一个动点,点Qa2a﹣6)位于第一象限内.问点APQ能否构成以点Q为直角顶点的等腰直角三角形,若能,请求出此时a的值,若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知二次函数yax2+bx+ca0)的图象经过A(﹣10),B40),C02)三点.

1)求该二次函数的解析式;

2)设点D是在x轴上方的二次函数图象上的点,且△DAB的面积为5,求出所有满足条件的点D的坐标;

3)能否在抛物线上找点P,使∠APB90°?若能,请直接写出所有满足条件的点P;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,二次函数yax2+bx+c的图象经过(﹣10)(30)两点,给出的下列6个结论:

ab0

②方程ax2+bx+c0的根为x1=﹣1x23

4a+2b+c0

④当x1时,yx值的增大而增大;

⑤当y0时,﹣1x3

3a+2c0

其中不正确的有_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,点DE分别在边ACAB上,BDCE交于点O,给出下列四个条件:

①∠EBO=DCOBE=CDOB=OCOE=OD.

从上述四个条件中,选取两个条件,不能判定ABC是等腰三角形的是:(

A. ①②B. ①③C. ③④D. ②③

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,以△ABC的边AB为直径作⊙O,点C在⊙O上,BD是⊙O的弦,∠A=∠CBD,过点CCFAB于点F,交BD于点G,过CCEBDAB的延长线于点E

1)求证:CE是⊙O的切线;

2)求证:CG=BG

3)若∠DBA=30°,CG=4,求BE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】“五一”期间甲乙两商场搞促销活动,甲商场的方案是:在一个不透明的箱子里放4个完全相同的小球,球上分别标“0元”“20元”“30元”“50元”,顾客每消费满300元就可从箱子里不放回地摸出2个球,根据两个小球所标金额之和可获相应价格的礼品;乙商场的方案是:在一个不透明的箱子里放2个完全相同的小球,球上分别标“5元”“30元”,顾客每消费满100元,就可从箱子里有放回地摸出1个球,根据小球所标金额可获相应价格的礼品.某顾客准备消费300.

(1)请用画树状图或列表法,求出该顾客在甲商场获得礼品的总价值不低于50元的概率;

(2)判断该顾客去哪个商场消费使获得礼品的总价值不低于50元机会更大?并说明理由.

查看答案和解析>>

同步练习册答案