【题目】如图所示,Rt△PAB的直角顶点P(3,4)在函数y=(x>0)的图象上,顶点A、B在函数y=(x>0,0<t<k)的图象上,PA∥x轴,连接OP,OA,记△OPA的面积为S△OPA,△PAB的面积为S△PAB,设w=S△OPA﹣S△PAB.
①求k的值以及w关于t的表达式;
②若用wmax和wmin分别表示函数w的最大值和最小值,令T=wmax+a2﹣a,其中a为实数,求Tmin.
【答案】①求k的值以及w关于t的表达式; ②Tmin=.
【解析】
试题分析:(1)由点P的坐标表示出点A、点B的坐标,从而得S△PAB=PAPB=(4﹣)(3﹣),再根据反比例系数k的几何意义知S△OPA=S△OPC﹣S△OAC=6﹣t,由w=S△OPA﹣S△PAB可得答案;(2)将(1)中所得解析式配方求得wmax=,代入T=wmax+a2﹣a配方即可得出答案.
试题解析:(1)∵点P(3,4),∴在y=中,当x=3时,y=,即点A(3,),
当y=4时,x=,即点B(,4),则S△PAB=PAPB=(4﹣)(3﹣),
如图,延长PA交x轴于点C,
则PC⊥x轴,又S△OPA=S△OPC﹣S△OAC=×3×4﹣t=6﹣t,
∴w=6﹣t﹣(4﹣)(3﹣)=﹣t2+t;
(2)∵w=﹣t2+t=﹣(t﹣6)2+,∴wmax=,
则T=wmax+a2﹣a=a2﹣a+=(a﹣)2+,
∴当a=时,Tmin=.
科目:初中数学 来源: 题型:
【题目】如图,(10分)AB∥DE,试问∠B、∠E、∠BCE有什么关系.
解:∠B+∠E=∠BCE
过点C作CF∥AB,
则____( )
又∵AB∥DE,AB∥CF,
∴____________( )
∴∠E=∠____( )
∴∠B+∠E=∠1+∠2
即∠B+∠E=∠BCE.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】学校举办“迎奥运”知识竞赛,设一、二、三等奖共12名,奖品发放方案如下表:
一等奖 | 二等奖 | 三等奖 |
1盒福娃和1枚徽章 | 1盒福娃 | 1枚徽章 |
用于购买奖品的总费用不少于1000元但不超过1100元,小明在购买“福娃”和微章前,了解到如下信息:
(1)求一盒“福娃”和一枚徽章各多少元?
(2)若本次活动设一等奖2名,则二等奖和三等奖应各设多少名?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线与抛物线相交于A、B两点,与轴交于点M,M、N关于轴对称,连接AN、BN.
(1)①求A、B的坐标;
②求证:∠ANM=∠BNM;
(2)如图,将题中直线变为,抛物线变为,其他条件不变,那么∠ANM=∠BNM是否仍然成立?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知点A(m+1,–2)和点B(3,n–1),若直线AB∥x轴,且AB=4,则m+n的值为( )
A. –3B. 5
C. 7或–5D. 5或–3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】同学们一起去电影院看电影,小明不小心把电影票打湿了(如图).
(1)他也记不清原来的数字是什么,他能很快找到自己的座位吗?为什么?
(2)通过上面的例子,你认为用几个数字能确定平面内一点的位置?
(3)如果将“8排6座”记作(8,6),那么“7排10座”如何表示?
(4)(3,6)表示什么位置?(6,3)又表示什么位置?它们的位置是否相同?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com