精英家教网 > 初中数学 > 题目详情
7.如图,在四边形ABCD中,∠A=60°,∠B=∠D=90°,BC=6,CD=4,求AB的长.

分析 延长AD,BC,交于点E,在直角三角形ABE中,由A的度数求出E的度数,在直角三角形DCE中,利用30度所对的直角边等于斜边的一半求出CE的长,由BC+CE求出BE的长,在直角三角形ABE中,设AB=x,则AE=2x,根据勾股定理求出x的值,即为AB的长.

解答 解:延长AD,BC,交于点E,
在Rt△ABC中,∠A=60°,BC=6,
∴∠E=30°,
在Rt△CDE中,CD=4,
∴CE=2CD=8,BE=BC+CE=6+8=14,
设AB=x,则有AE=2x,
根据勾股定理得:x2+142=(2x)2
解得:x=$\frac{14\sqrt{3}}{3}$,
则AB=$\frac{14\sqrt{3}}{3}$.

点评 此题考查了勾股定理,以及含30度直角三角形的性质,熟练掌握勾股定理是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

9.解方程组:$\left\{\begin{array}{l}{x+y+z=12}\\{x+2y-z=6}\\{3x-y+z=10}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.阅读下列问题:
$\frac{1}{{1+\sqrt{2}}}=\frac{{1×(\sqrt{2}-1)}}{{(\sqrt{2}+1)(\sqrt{2}-1)}}=\sqrt{2}-1$;
$\frac{1}{{\sqrt{3}+\sqrt{2}}}=\frac{{\sqrt{3}-\sqrt{2}}}{{(\sqrt{3}+\sqrt{2})(\sqrt{3}-\sqrt{2})}}=\sqrt{3}-\sqrt{2}$;
$\frac{1}{{\sqrt{5}+2}}=\frac{{\sqrt{5}-2}}{{(\sqrt{5}+2)(\sqrt{5}-2)}}=\sqrt{5}-2$.
(1)求$\frac{1}{\sqrt{n+1}+\sqrt{n}}$(n为整数)的值.
(2)利用上面所揭示的规律计算:
 $\frac{1}{1+\sqrt{2}}$+$\frac{1}{\sqrt{2}+\sqrt{3}}$+$\frac{1}{\sqrt{3}+\sqrt{4}}$+…+$\frac{1}{\sqrt{2010}+\sqrt{2011}}$+$\frac{1}{\sqrt{2011}+\sqrt{2012}}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.某工厂用如图甲所示的长方形和正方形纸板,做成如图乙所示的竖式与横式两种长方体形状的无盖纸盒.现有正方形纸板162张,长方形纸板340张.若要做两种纸盒共100个,设做竖式纸盒x个.

(1)根据题意,完成以下表格:
(2)按两种纸盒的生产个数来分,有哪几种生产方案?
(3)如果做一个竖式纸盒的费用为2元,做一个横式纸盒的费用为1元,如何安排设计方案,使得生产费用最少?
竖式纸盒(个)横式纸盒(个)
x100-x
  正方形纸板(张)x  2(100-x)
 长方形纸板(张)4x3(100-x)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.已知,如图所示,在Rt△ABC中,∠C=90°,
(1)作∠B的平分线BD交AC于点D;(要求:尺规作图,保留作图痕迹,不写作法.)
(2)若CD=6,AD=10,求AB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图1,已知菱形ABCD的三个顶点A,B,C在矩形EFGH的边上,P是EH上一点,连接HD,BP.
(1)当∠APB=∠AHD=∠BAD时,求证:PH=PB+HD;
(2)若EF=10,EH=12,FB=2,△AHD的面积能否等于2?为什么?
(3)如图2,分别连接CP,CH,当∠APB=∠AHD=∠BAD=120°时,△CPH是什么特殊的三角形(不需证明)?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图所示,CD,CE是⊙O的两条弦,A,B分别是$\widehat{CD}$和$\widehat{CE}$的中点,连接AB交CD于点F,交CE于点H,求证:CF=CH.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

16.在实数范围内分解因式:x3-4x2=x2(x-4).

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.下列运算中正确的是(  )
A.a2•a3=a5B.(a23=a5C.a6÷a2=a3D.a5+a5=2a10

查看答案和解析>>

同步练习册答案