分析 延长AD,BC,交于点E,在直角三角形ABE中,由A的度数求出E的度数,在直角三角形DCE中,利用30度所对的直角边等于斜边的一半求出CE的长,由BC+CE求出BE的长,在直角三角形ABE中,设AB=x,则AE=2x,根据勾股定理求出x的值,即为AB的长.
解答
解:延长AD,BC,交于点E,
在Rt△ABC中,∠A=60°,BC=6,
∴∠E=30°,
在Rt△CDE中,CD=4,
∴CE=2CD=8,BE=BC+CE=6+8=14,
设AB=x,则有AE=2x,
根据勾股定理得:x2+142=(2x)2,
解得:x=$\frac{14\sqrt{3}}{3}$,
则AB=$\frac{14\sqrt{3}}{3}$.
点评 此题考查了勾股定理,以及含30度直角三角形的性质,熟练掌握勾股定理是解本题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
| 竖式纸盒(个) | 横式纸盒(个) | |
| x | 100-x | |
| 正方形纸板(张) | x | 2(100-x) |
| 长方形纸板(张) | 4x | 3(100-x) |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com