精英家教网 > 初中数学 > 题目详情

【题目】某学校开运动会,要买一批笔记本和圆珠笔作为奖品,笔记本要买50本,圆珠笔要买若干支.张老师去了两家文具店,笔记本和圆珠笔的零售价分别为3元和2元,但甲文具店的营业员说:“如果笔记本按零售价,那么圆珠笔可按零售价的8折优惠.”乙文具店的营业员说:“笔记本和圆珠笔可按9折优惠.

1)若要购买的圆珠笔为支,用含的式子表示甲、乙两个店的收费;

2)若学校要买100支圆珠笔作为奖品,你认为张老师去哪家文具店较合算?可节省多少钱?

3)若买圆珠笔支时,选择甲文具店较合算,求此时可节省多少钱?

【答案】11.6x+1501.8x+135;(2)甲,5元;(3)(0.2y-15)元

【解析】

1)根据题意可以分别列出甲、乙两文具店的收费;
2)将x=80代入(1)中甲乙收费的式子中,然后进行比较即可解答本题;
3)用乙的收费减去甲的收费即可得到在甲文具店可以省多少钱.

解:(1)由题意可得,
甲文具店的收费为:50×3+2x×0.8=1.6x+150
乙文具店的收费为:(50×3+2x)×0.9=1.8x+135
即甲文具店的收费为1.6x+150,乙文具店的收费为1.8x+135
2)当x=100时,甲文具店收费为:1.6×100+150=310(元),乙文具店收费为:1.8×100+135=315(元),
315310315-310=5
∴学校要买100支圆珠笔作为奖品,我认为张老师应取甲文具店较合算,可节省5元;
3)(1.8y+135-1.6y+150
=1.8y+135-1.6y-150
=0.2y-15
即要买圆珠笔y支时,选择甲文具店较合算,此时节省(0.2y-15)元.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】正方形ABCD,CEFG按如图放置,点B,C,E在同一条直线上,点P在BC边上,PA=PF,且∠APF=90°,连接AF交CD于点M,有下列结论:①EC=BP;②AP=AM;③∠BAP=∠GFP;④AB2+CE2AF2;⑤S正方形ABCD+S正方形CEFG=2S△APF.其中正确的是(  )

A. ①②③ B. ①③④ C. ①②④⑤ D. ①③④⑤

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线yx+x轴相交于点B,与y轴相交于点A

1)求∠ABO的度数;

2)过点A的直线lx轴的正半轴于点C,且ABAC,求直线的函数解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两人参加某体育项目训练,为了便于研究,把最后5次的训练成绩分别用实线和虚线连接起来,如图,下面的结论错误的是(  )

A. 乙的第2次成绩与第5次成绩相同

B. 3次测试,甲的成绩与乙的成绩相同

C. 4次测试,甲的成绩比乙的成绩多2

D. 5次测试中,甲的成绩都比乙的成绩高

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,cm, cm,中,cmcmEFBC上,保持不动,并将1cm/s的速度向点C运动,移动开始前点F与点B重合,当点E与点C重合时,停止移动.边DEAB相交于点G,连接FG,设移动时间为ts).

1从移动开始到停止,所用时间为________s

2)当DE平分AB时,求t的值;

3)当为等腰三角形时,求t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】抛物线y=ax2+bx+3a0)经过点A10),B0),且与y轴相交于点C

(1)求这条抛物线的表达式;

(2)求∠ACB的度数;

(3)设点D是所求抛物线第一象限上一点,且在对称轴的右侧,点E在线段AC上,且DEAC,当△DCE与△AOC相似时,求点D的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在数学拓展课《折叠矩形纸片》上,小林折叠矩形纸片ABCD进行如下操作:把△ABF翻折,点B落在CD边上的点E处,折痕AFBC边于点F把△ADH翻折,点D落在AE边长的点G处,折痕AHCD边于点H.若AD6AB10,则的值是(  )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为创建“国家园林城市”,某校举行了以“爱我黄石”为主题的图片制作比赛,评委会对200名同学的参赛作品打分发现,参赛者的成绩x均满足50x100,并制作了频数分布直方图,如图.

根据以上信息,解答下列问题:

(1)请补全频数分布直方图;

(2)若依据成绩,采取分层抽样的方法,从参赛同学中抽40人参加图片制作比赛总结大会,则从成绩80x90的选手中应抽多少人?

(3)比赛共设一、二、三等奖,若只有25%的参赛同学能拿到一等奖,则一等奖的分数线是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】点O为直线AB上一点,过点O作射线OC,使BOC=65°,将一直角三角板的直角顶点放在点O处.

(1)如图①,将三角板MON的一边ON与射线OB重合时,则MOC=

(2)如图②,将三角板MON绕点O逆时针旋转一定角度,此时OC是MOB的角平分线,求旋转角BONCON的度数;

(3)将三角板MON绕点O逆时针旋转至图③时,NOC=AOM,求NOB的度数.

查看答案和解析>>

同步练习册答案