精英家教网 > 初中数学 > 题目详情

【题目】某公司欲招聘一名公务人员,对甲、乙两位应试者进行了面试和笔试,他们的成绩(百分制)如表所示:

应试者

面试

笔试

86

90

92

83

1)如果公司认为面试和笔试同等重要,从他们的成绩看,谁将被录取?

2)如果公司认为作为公务人员面试成绩应该比笔试成绩更重要,并分别赋予它们64的权,计算甲、乙两人各自的平均成绩,谁将被录取?

【答案】(1)甲将被录取;(2)乙将被录取.

【解析】

1)求得面试和笔试的平均成绩即可得到结论;
2)根据题意先算出甲、乙两位应聘者的加权平均数,再进行比较,即可得出答案.

解:(1)=89(分),

=87.5(分),

因为

所以认为面试和笔试成绩同等重要,从他们的成绩看,甲将被录取;

(2)甲的平均成绩为:(86×6+90×4)÷10=87.6(分),

乙的平均成绩为:(92×6+83×4)÷10=88.4(分),

因为乙的平均分数较高,

所以乙将被录取.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】阅读材料:若关于x的一元二次方程的根均为整数,称该方程为“快乐方程”. 我们发现任何一个“快乐方程”的判别式一定为完全平方数. 规定为该“快乐方程”的“快乐数”. 若有另一个“快乐方程”的“快乐数”为且满足,则称互为“乐呵数”. 例如:“快乐方程”的两根均为整数,其判别式,其“快乐数”

(1)“快乐方程”的“快乐数”为 ,若关于x的一元二次方程m为整数,且5<m<22)是“快乐方程”,求其“快乐数”;

(2)若关于x的一元二次方程m、n均为整数)都是“快乐方程”,且其“快乐数”互为“乐呵数”,求n的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(2017辽宁省盘锦市,第18题,3分)如图,点A1(1,1)在直线y=x上,过点A1分别作y轴、x轴的平行线交直线于点B1B2,过点B2y轴的平行线交直线y=x于点A2,过点A2x轴的平行线交直线于点B3,…,按照此规律进行下去,则点An的横坐标为______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知正比例函数yk1x的图象与反比例函数的图象的一个交点是(1,3).

(1)写出这两个函数的表达式,并确定这两个函数图象的另一个交点的坐标;

(2)画出草图,并据此写出使反比例函数大于正比例函数的x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,BC是路边坡角为30°,长为10米的一道斜坡,在坡顶灯杆CD的顶端D处有一探射灯,射出的边缘光线DADB与水平路面AB所成的夹角∠DAN和∠DBN分别是37°60°(图中的点A、B、C、D、M、N均在同一平面内,CMAN).

(1)求灯杆CD的高度;

(2)求AB的长度(结果精确到0.1米).(参考数据:=1.73.sin37°≈060,cos37°≈0.80,tan37°≈0.75)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:

(1)每千克核桃应降价多少元?

(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,甲、乙两渔船同时从港口O出发外出捕鱼,乙沿南偏东30°方向以每小时10海里的速度航行,甲沿南偏西75°方向以每小时10海里的速度航行,当航行1小时后,甲在A处发现自己的渔具掉在乙船上,于是迅速改变航向和速度,仍以匀速沿南偏东60°方向追赶乙船,正好在B处追上.则甲船追赶乙船的速度为________海里/小时?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线 y=﹣x+2 与反比例函数 y=(k≠0)的图象交于 A(a,3)、B(3,b)两点,直线 AB y 轴于点 C、交 x 轴于点 D.

(1)请直接写出 a=_______,b=______,反比例函数的解析式为_______

(2) x 轴上是否存在一点 E,使得EBD=OAC,若存在请求出点 E 的坐标, 若不存在,请说明理由.

(3)P x 轴上的动点,点 Q 是平面内的动点,是以 A、B、P、Q 为顶点的四边形是矩形,若存在请求出点 Q 的坐标,若不存在请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在边长为5的菱形OABC中,sin∠AOC=,O为坐标原点,A点在x轴的正半轴上,B,C两点都在第一象限.点P以每秒1个单位的速度沿O→A→B→C→O运动一周,设运动时间为t(秒).请解答下列问题:

(1)当CP⊥OA时,求t的值;

(2)当t<10时,求点P的坐标(结果用含t的代数式表示);

(3)以点P为圆心,以OP为半径画圆,当P与菱形OABC的一边所在直线相切时,请直接写出t的值.

查看答案和解析>>

同步练习册答案