精英家教网 > 初中数学 > 题目详情

【题目】ABC中,∠A=B=ACBCDABC的高,CE是∠ACB的角平分线,求∠DCE的度数。

【答案】15°

【解析】

试题根据已知条件用∠A表示出∠B和∠ACB,利用三角形的内角和求出∠A,再求出∠ACB,然后根据直角三角形两锐角互余求出∠ACD,最后根据角平分线的定义求出∠ACE即可.

试题解析:∵∠A=∠B=∠ACB,∠A=x,∴∠B=2x,∠ACB=3x,

∵∠A+∠B+∠ACB=180°,∴x+2x+3x=180°,

解得x=30°,∴∠A=30°,∠ACB=90°,

∵CD△ABC的高,∴∠ADC=90°,∴∠ACD=90°-30°=60°,

∵CE∠ACB的角平分线,∴∠ACE=×90°=45°,

∴∠DCE=∠ACD-∠ACE=60°-45°=15°.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】为响应学雷锋、树新风、做文明中学生号召,某校开展了志愿者服务活动,活动项目有戒毒宣传”、“文明交通岗”、“关爱老人”、“义务植树”、“社区服务等五项,活动期间,随机抽取了部分学生对志愿者服务情况进行调查,结果发现,被调查的每名学生都参与了活动,最少的参与了1项,最多的参与了5项,根据调查结果绘制了如图所示不完整的折线统计图和扇形统计图.

(1)被随机抽取的学生共有多少名?

(2)在扇形统计图中,求活动数为3项的学生所对应的扇形圆心角的度数,并补全折线统计图;

(3)该校共有学生2000人,估计其中参与了4项或5项活动的学生共有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】课外兴趣小组活动时,老师提出了如下问题:

1)如图1中,若,求边上的中线的取值范围.小明在组内经过合作交流,得到了如下的解决方法:将绕点逆时针旋转得到,把集中在中,利用三角形的三边关系可得,则

2)问题解决:受到(1)的启发,请你证明下面命题:如图2,在中,边上的中点,于点于点,连接

①求证:

②如图3,若,探索线段之间的等量关系,并加以证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,AE⊥BC,CF⊥AD,垂足分别为E,F,AE,CF分别与BD交于点G和H,且AB=

(1)若tan∠ABE =2,求CF的长;
(2)求证:BG=DH.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在边上,为边上一动点,连接关于所在直线对称,点分别为的中点,连接并延长交所在直线于点,连接.当为直角三角形时,的长为_________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某年级共有300名学生.为了解该年级学生A,B两门课程的学习情况,从中随机抽取60名学生进行测试,获得了他们的成绩(百分制),并对数据(成绩)进行整理、描述和分析.下面给出了部分信息.

.A课程成绩的频数分布直方图如下(数据分成6组:);

.A课程成绩在这一组是:

70 71 71 71 76 76 77 78 79 79 79

.A,B两门课程成绩的平均数、中位数、众数如下:

课程

平均数

中位数

众数

A

B

70

83

根据以上信息,回答下列问题:

(1)写出表中的值;

(2)在此次测试中,某学生的A课程成绩为76分,B课程成绩为71分,这名学生成绩排名更靠前的课程是________(填“A”“B”),理由是_______;

(3)假设该年级学生都参加此次测试,估计A课程成绩超过分的人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】类比思想就是根据已经学习过的知识,类比探究新知识的思想方法.我们在探究矩形、菱形、正方形等问题中的数量关系时,经常用到类比思想.某数学兴趣小组在数学课外活动中,研究三角形和正方形的性质时,做了如下探究:在中,为直线上一动点(不与重合),以为边在右侧作正方形连接

1)(观察猜想)如图①,当点在线段上时;

的位置关系为:

之间的数量关系为: (将结论直接写在横线上)

2)(数学思考)如图②,当点在线段的延长线上时,结论①②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明;

3)(拓展延伸)如图③,当点在线段的延长线上时,延长于点,连接.若已知请直接写出的长.(提示: .过)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD内接于⊙O,∠BAD=90°, = ,过点C作CE⊥AD,垂足为E,若AE=3,DE= ,求∠ABC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2019331日,2019长安汽车重庆国际马拉松赛在南滨路鸣枪开跑,小育和小才参加了此次比赛,小育在跑出小时后不慎摔倒,志愿者将小育扶到路旁处理伤口,休息了分钟后决定再次出发,在小育出发小时后小才追上小育,如图所示是两人离开出发地的距离(公里)和出发时间(小时)之间的函数图象.当小才到达终点时,小育距离终点____公里.

查看答案和解析>>

同步练习册答案