精英家教网 > 初中数学 > 题目详情

【题目】如图,四边形ABCD内接于⊙O,∠BAD=90°, = ,过点C作CE⊥AD,垂足为E,若AE=3,DE= ,求∠ABC的度数.

【答案】解:作BF⊥CE于F,

∵∠BCF+∠DCE=90°,∠D+∠DCE=90°,
∴∠BCF=∠D.
又BC=CD,
∴Rt△BCF≌Rt△CDE.
∴BF=CE.
又∵∠BFE=∠AEF=∠A=90°,
∴四边形ABFE是矩形.
∴BF=AE.
∴AE=CE=3,
在Rt△CDE中

∴∠D=60°
∵∠ABC+∠D=180°
∴∠ABC=120°.
【解析】由弧BC=弧CD ,可得弦BC=CD ,需作BF⊥CE于F,构造全等三角形,Rt△BCF≌Rt△CDE,由三角函数求出tan D,由∠BCF=∠D,再利用圆内接四边形性质,求出∠ABC的度数.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,AB=AC,AD是∠BAC的平分线,AE是∠BAC的外角的平分线,CE⊥AE于点E. 求证:四边形ADCE是矩形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC中,∠A=B=ACBCDABC的高,CE是∠ACB的角平分线,求∠DCE的度数。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形中,平分于点,给出以下结论:①为等腰直角三角形;②为等边三角形;③;④的中位线.其中正确的结论有(

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知⊙O为四边形ABCD的外接圆,O为圆心,若∠BCD=120°,AB=AD=2,则⊙O的半径长为( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线上有三个正方形,若正方形的面积分别为815,则正方形的面积为(

A.23B.25C.30D.35

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某地区果农收获草莓30吨,枇杷13吨,现计划租用甲、乙两种货车共10辆将这批水果全部运往省城,已知甲种货车可装草莓4吨和枇杷1吨,乙种货车可装草莓、枇杷各2吨.

(1)该果农安排甲、乙两种货车时有几种方案请您帮助设计出来;

(2)若甲种货车每辆要付运输费2 000元,乙种货车每辆要付运输费1 300元,则该果农应选择哪种运输方案才能使运费最少,最少运费是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,一个智能机器人接到如下指令,从原点O出发,按向右、向上、向右、向下的方向依次不断移动,每次移动1个单位长度,其行走的路线如图所示,第1次移动到A1,第2次移动到A2……,第n次移动到An,则三角形OA2A2018的面积是(

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,直线MN与直线AB、CD分别交于点E、F,∠1与∠2互补.

(1)试判断直线AB与直线CD的位置关系,并说明理由;

(2)如图2,∠BEF与∠EFD的角平分线交于点P,EPCD交于点G,点HMN上一点,且GH⊥EG,求证:PF∥GH;

(3)如图3,在(2)的条件下,连接PH,KGH上一点使∠PHK=∠HPK,作PQ平分∠EPK,问∠HPQ的大小是否发生变化?若不变,请求出其值;若变化,说明理由.

查看答案和解析>>

同步练习册答案