【题目】如图,△ABC中,AB=AC,AD是∠BAC的平分线,AE是∠BAC的外角的平分线,CE⊥AE于点E. 求证:四边形ADCE是矩形.
【答案】证明:∵AD是∠BAC的平分线,
∴∠BAD=∠CAD= ∠BAC,
∵AE是∠BAC的外角的平分线,
∴∠CAE=∠FAE= ∠FAC,
∵∠BAC+∠FAC=180°,
∴∠DAC+∠EAC= ×180°=90°,
即∠DAE=90°,
∵CE⊥AE,
∴∠AEC=90°,
∵AB=AC,
∴∠B=∠ACB,
∵∠B+∠ACB+∠BAC=180°,
∴∠B+∠ACB=∠FAE+∠CAE,
∴∠FAE=∠B,
∴AE∥BC,
∴∠AEC+∠ECB=180°,
∴∠ECB=90°,
∴∠DAE=∠AEC=∠ECB=90°,
∴四边形ADCE是矩形.
【解析】由角平分线定义得:∠BAD=∠CAD= ∠BAC和∠CAE=∠FAE= ∠FAC,则∠DAE=90°,再证明∠AEC=∠ECB=90°,由三个角是直角的四边形是矩形得出结论.
科目:初中数学 来源: 题型:
【题目】知识背景:过中心对称图形的对称中心的任意一条直线都将其分成全等的两个部分.
(1)如图①,直线m经过平行四边形ABCD对角线的交点O,则S四边形AEFB S四边形DEFC(填“>”“<”“=”);
(2)如图②,两个正方形如图所示摆放,O为小正方形对角线的交点,求作过点O的直线将整个图形分成面积相等的两部分;
(3)八个大小相同的正方形如图③所示摆放,求作直线将整个图形分成面积相等的两部分(用三种方法分割).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为响应“学雷锋、树新风、做文明中学生”号召,某校开展了志愿者服务活动,活动项目有“戒毒宣传”、“文明交通岗”、“关爱老人”、“义务植树”、“社区服务”等五项,活动期间,随机抽取了部分学生对志愿者服务情况进行调查,结果发现,被调查的每名学生都参与了活动,最少的参与了1项,最多的参与了5项,根据调查结果绘制了如图所示不完整的折线统计图和扇形统计图.
(1)被随机抽取的学生共有多少名?
(2)在扇形统计图中,求活动数为3项的学生所对应的扇形圆心角的度数,并补全折线统计图;
(3)该校共有学生2000人,估计其中参与了4项或5项活动的学生共有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,中,其中;
(1)求线段的长(用和的代数式表示);
(2)如图1,若,点在上,点在上,点到和BC的距离相等,,连接,求的长;
(3)如图2,若为的中点,,点分别在线段上,且,连接,和,求EF的值;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在ABCD中 过点A作AE⊥DC,垂足为E,连接BE,F为BE上一点,且∠AFE=∠D.
(1)求证:△ABF∽△BEC;
(2)若AD=5,AB=8,sinD= ,求AF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ABC和∠ACB的平分线相交于点O,过点O作EF∥BC交AB于E,交AC于F,过点O作OD⊥AC于D,下列四个结论:
①EF=BE+CF;
②∠BOC=90°+∠A;
③点O到△ABC各边的距离相等;
④设OD=m,AE+AF=n,则.
其中正确的结论是____.(填序号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】课外兴趣小组活动时,老师提出了如下问题:
(1)如图1,中,若,,求边上的中线的取值范围.小明在组内经过合作交流,得到了如下的解决方法:将绕点逆时针旋转得到,把、、集中在中,利用三角形的三边关系可得,则;
(2)问题解决:受到(1)的启发,请你证明下面命题:如图2,在中,是边上的中点,,交于点,交于点,连接.
①求证:;
②如图3,若,探索线段、、之间的等量关系,并加以证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平行四边形ABCD中,AE⊥BC,CF⊥AD,垂足分别为E,F,AE,CF分别与BD交于点G和H,且AB= .
(1)若tan∠ABE =2,求CF的长;
(2)求证:BG=DH.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com