【题目】如图,直线上有三个正方形,若正方形,的面积分别为8和15,则正方形的面积为( )
A.23B.25C.30D.35
【答案】A
【解析】
根据正方形的性质得出∠EFG=∠EGH=∠HMG=90°,EG=GH,求出∠FEG=∠HGM,证△EFG≌△GMH,推出FG=MH,GM=EF,求出EF2=7,HM2=15,求出B的面积为EG2=EF2+FG2=EF2+HM2,代入求出即可.
解:如图,
根据正方形的性质得出∠EFG=∠EGH=∠HMG=90°,EG=GH,
∵∠FEG+∠EGF=90°,∠EGF+∠HGM=90°,
∴∠FEG=∠HGM,
在△EFG和△GMH中,
,
∴△EFG≌△GMH(AAS),
∴FG=MH,GM=EF,
∵A和C的面积分别为8和15,
∴EF2=8,HM2=15,
∴B的面积为EG2=EF2+FG2=EF2+HM2=8+15=23,
故选:A.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ABC和∠ACB的平分线相交于点O,过点O作EF∥BC交AB于E,交AC于F,过点O作OD⊥AC于D,下列四个结论:
①EF=BE+CF;
②∠BOC=90°+∠A;
③点O到△ABC各边的距离相等;
④设OD=m,AE+AF=n,则.
其中正确的结论是____.(填序号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某年级共有300名学生.为了解该年级学生A,B两门课程的学习情况,从中随机抽取60名学生进行测试,获得了他们的成绩(百分制),并对数据(成绩)进行整理、描述和分析.下面给出了部分信息.
.A课程成绩的频数分布直方图如下(数据分成6组:,,,,,);
.A课程成绩在这一组是:
70 71 71 71 76 76 77 78 79 79 79
.A,B两门课程成绩的平均数、中位数、众数如下:
课程 | 平均数 | 中位数 | 众数 |
A | |||
B | 70 | 83 |
根据以上信息,回答下列问题:
(1)写出表中的值;
(2)在此次测试中,某学生的A课程成绩为76分,B课程成绩为71分,这名学生成绩排名更靠前的课程是________(填“A”或“B”),理由是_______;
(3)假设该年级学生都参加此次测试,估计A课程成绩超过分的人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读理解题: 学习了二次根式后,你会发现一些含有根号的式子可以写成另一个式子的平方,如3+2 =(1+ )2 , 我们来进行以下的探索:
设a+b =(m+n )2(其中a,b,m,n都是正整数),则有a+b =m2+2n2+2mn ,∴a=m+2n2 , b=2mn
, 这样就得出了把类似a+b 的式子化为平方式的方法.
请仿照上述方法探索并解决下列问题:
(1)当a,b,m,n都为正整数时,若a﹣b =(m﹣n )2 , 用含m,n的式子分别表示a,b,得a= , b=;
(2)利用上述方法,找一组正整数a,b,m,n填空:﹣ =(﹣ )2
(3)a﹣4 =(m﹣n )2且a,m,n都为正整数,求a的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,C、D两点在以AB为直径的半圆O上,AD平分∠BAC,AB=20,AD=4 ,DE⊥AB于E.
(1)求DE的长.
(2)求证:AC=2OE.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知AB、AD是⊙O的弦,点C是DO的延长线与弦AB的交点,∠ABO=30°,OB=2.
(1)求弦AB的长;
(2)若∠D=20°,求∠BOD的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1所示在平面直角坐标系中,有长方形OABC,O是坐标原点,A(a,0),C(0,b),且a,b满足
(1)求A,B,C三点坐标;
(2)如图2所示,长方形对角线OB、AC交于D点,若有一点P从A点出发,以1单位/秒速度向x轴负方向匀速运动,同时另一点Q从O出发,以2个单位/秒,沿长方形边长O-C-B顺时针匀速运动,当Q到达B点时P、Q同时停止运动,设P点开始运动时间为t,请问:当t为何值时有S△OCP≤S△ODQ ?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,A(﹣2,2),B(﹣3,﹣2)(每个小正方形的边长均为1).
(1)若点D与点A关于y轴对称则点D的坐标为 .
(2)将点B向右平移5个单位,再向上平移2个单位得到点C,则点C的坐标为 .
(3)请在图中表示出D、C两点,顺次连接ABCD,并求出A、B、C、D组成的四边形ABCD的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com