【题目】如图,C、D两点在以AB为直径的半圆O上,AD平分∠BAC,AB=20,AD=4 ,DE⊥AB于E.
(1)求DE的长.
(2)求证:AC=2OE.
【答案】
(1)解:连接BD.
∵AB为直径,
∴∠ADB=90°,
在Rt△ADB中,BD= =
=4 ,
∵S△ADB= ADBD=
ABDE
∴ADBD=ABDE,
∴DE= =
=4
,
即DE=4 ;
(2)解:证明:连接OD,作OF⊥AC于点F.
∵OF⊥AC,
∴AC=2AF,
∵AD平分∠BAC,
∴∠BAC=2∠BAD.
又∵∠BOD=2∠BAD,
∴∠BAC=∠BOD,
Rt△OED和Rt△AFO中,
∵
∴△AFO≌△OED(AAS),
∴AF=OE,
∵AC=2AF,
∴AC=2OE.
【解析】(1)出现直径时,连接直径的端点和圆周上的一点,构成90度圆周角,利用勾股定理和面积法可以解决;(2)过圆心向弦引垂线,由垂径定理,得平分,构造出AC的一半,再证△AFO≌△OED,可证出结论.
科目:初中数学 来源: 题型:
【题目】某市为了节约用水,采用分段收费标准.若某户居民每月应交水费y(元)与用水量x(立方米)之间关系的图象如图所示,根据图象回答:
(1)该市自来水收费,每户用水不超过5立方米时,每立方米收费多少元?超过5立方米时,超过的部分每立方米收费多少元?
(2)求出y与x之间的关系式.
(3)若某户居民某月用水量为3.5立方米,则应交水费多少元?若某户居民某月交水费17元,则该户居民用水多少立方米?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在中,
是
边上的一点,
是
的中点,过点
作
的平行交
延长点
,且
,连接
.
(1)求证:是
的中点;
(2)若,试判断四边形
的形状,并证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是某水库大坝的横截面示意图,已知AD∥BC,且AD、BC之间的距离为15米,背水坡CD的坡度i=1:0.6,为提高大坝的防洪能力,需对大坝进行加固,加固后大坝顶端AE比原来的顶端AD加宽了2米,背水坡EF的坡度i=3:4,则大坝底端增加的长度CF是( )米.
A.7
B.11
C.13
D.20
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知点A在函数y1=﹣ (x>0)的图象上,点B在直线y2=kx+1+k(k为常数,且k≥0)上.若A,B两点关于原点对称,则称点A,B为函数y1 , y2图象上的一对“友好点”.请问这两个函数图象上的“友好点”对数的情况为( )
A.有1对或2对
B.只有1对
C.只有2对
D.有2对或3对
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在笔直的公路旁有一座山,为方便运输货物现要从公路
上的
处开凿隧道修通一条公路到
处,已知点
与公路上的停靠站
的距离为
,与公路上另-停靠站
的距离为
,停靠站
之间的距离为
,且
求修建的公路
的长;
若公路
修通后,辆货车从
处经过
点到
处的路程是多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com