【题目】如图,0为原点,A(4,0),E(0,3),四边形OABC,四边形OCDE都为平行四边形,OC=5,函数y= (x>0)的图象经过AB的中点F和DE的中点G,则k的值为 .
【答案】9
【解析】
∵A(4,0),E(0,3),∴OE=3,OA=4,
由OABC和OCDE得:OE∥DC,BC∥OA且DC=OE=3,BC=OA=4,
设C(a,b),则D(a,b+3)、B(4+a,b),
∵AB的中点F和DE的中点G,
∴G ,F ,
∵函数y= (x>0)的图象经过点G和F,
则 × = ,3a=4b,a= ,
∵OC=5,C(a,b),
∴a2+b2=52, ,b=±3,
∵b>0,
∴b=3,a=4,
∴F(6, ),
∴k=6× =9;所以答案是:9.
【考点精析】掌握反比例函数的图象是解答本题的根本,需要知道反比例函数的图像属于双曲线.反比例函数的图象既是轴对称图形又是中心对称图形.有两条对称轴:直线y=x和 y=-x.对称中心是:原点.
科目:初中数学 来源: 题型:
【题目】如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作等边△ABC和等边△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.则下列结论:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP.其中正确的是______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,二次函数y=﹣x2+6x﹣9的图象顶点为A,与y轴交于点B.若在该二次函数图形上取一点C,在x轴上取一点D,使得四边形ABCD为平行四边形,则D点的坐标为( )
A.(﹣9,0)
B.(﹣6,0)
C.(6,0)
D.(9,0)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB,于点E
(1)求证:△ACD≌△AED;
(2)若∠B=30°,CD=1,求BD的长。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将连续的奇数,,,...按图1中的方式排成一个数表,用一个十字框框住个数,这样框出的任意个数中,四个分支上的数分别用、、、表示,如图2所示。
(1)计算:若十字框中间的数为,则______________;
(2)发现:移动十字框,比较与中间的数.猜想:十字框中、、、的和是中间的数的___________________;
(3)验证:用含的式子表示、、、,并利用整式运算验证(2)中猜想的正确性;
(4)应用:设,判断的值能否等于,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,A点的坐标是(0,6),AB=BO,∠ABO=120°,C在x轴上运动,在坐标平面内作点D,使AD=DC,∠ADC=120°,连结OD,则OD的长的最小值为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为鼓励居民节约用气,某省决定对天然气收费实行阶梯气价,阶梯气价划分为两个档级:
(1)第一档气量为每户每月30立方米(含30立方米)以内,执行基准价格;
(2)第二档气量为每户每月超出30立方米以上部分,执行市场调节价格.
小明家5月份用气35立方米,交费112.5元;6月份用气41立方米,交费139.5元,若小明7月份用气29立方米,则他家应交费________元.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下列解答过程:如图甲,AB∥CD,探索∠APC与∠BAP、∠PCD之间的关系.
解:过点P作PE∥AB.
∵AB∥CD,
∴PE∥AB∥CD(平行于同一条直线的两条直线互相平行).
∴∠1+∠A=180°(两直线平行,同旁内角互补),
∠2+∠C=180°(两直线平行,同旁内角互补).
∴∠1+∠A+∠2+∠C=360°.
又∵∠APC=∠1+∠2,
∴∠APC+∠A+∠C=360°.
如图乙和图丙,AB∥CD,请根据上述方法分别探索两图中∠APC与∠BAP、∠PCD之间的关系.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com