【题目】如图:在平面直角坐标系中,网格中每一个小正方形的边长为1个单位长度,△ABC的顶点均在格点上,三个顶点的坐标分别是A(2,2),B(1,0),C(3,1).
(1)画出△ABC关于x轴对称的图形△A1B1C1;
(2)画出将△ABC绕原点O按逆时针方向旋转90°所得作的△A2B2C2,并求出C2的坐标;
(3)在旋转过程中,点A经过的路径为弧,那么的长为 ;
(4)△A1B1C1与△A2B2C2成中心对称吗?若成中心对称,写出对称中心的坐标.
【答案】(1)见解析;(2)见解析,(﹣1,3);(3)2;(4)π.
【解析】
试题分析:(1)利用关于x轴对称的点的坐标特征写出点A1、B1、C1的坐标,然后描点即可得到△A1B1C1;
(2)利用网格特点和旋转的性质画出点A2、B2、C2,然后描点即可得到△A2B2C2;
(3)先计算出OA,然后根据弧长公式计算;
(4)观察所画的图形,根据中心对称的定义可判断)△A1B1C1与△A2B2C2成中心对称,然后写出对称中心的坐标.
解:(1)如图,△A1B1C1为所作;
(2)如图,△A2B2C2为所作,并求出C2的坐标为(﹣1,3);
(3)OA==2,
在旋转过程中,点A经过的路径为弧,那么的长==π;
(4)△A1B1C1与△A2B2C2成中心对称,对称中心的坐标为(,).
故答案为π.
科目:初中数学 来源: 题型:
【题目】如图1,已知正方形ABCD边长为1,点P是AD边上的一个动点,点A关于直线BP的对称点是点Q,连结PQ、DQ、CQ、BQ.设AP﹦x.
(1)BQ+DQ的最小值是 ,此时x的值是 ;
(2)如图2,若PQ的延长线交CD边于E,并且∠CQD=90°.
① 求证:QE﹦EC; ② 求x的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知二次函数y=ax2+x+c的图象与y轴交于点A(0,4),与x轴交于点B、C,点C坐标为(8,0),连接AB、AC.
(1)请直接写出二次函数y=ax2+x+c的表达式;
(2)判断△ABC的形状,并说明理由;
(3)若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,请直接写出此时点N的坐标;
(4)若点N在线段BC上运动(不与点B、C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求此时点N的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某同学粗心大意,因式分解时,把等式x4-■=(x2+4)(x+2)(x-▲)中的两个数字弄污了,则式子中的■,▲对应的一组数字可以是( )
A. 8,1 B. 16,2
C. 24,3 D. 64,8
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将抛物线y=2x2向上平移1个单位,再向右平移2个单位,则平移后的抛物线为( )
A.y=2(x+2)2+1 B.y=2(x﹣2)2+1
C.y=2(x+2)2﹣1 D.y=2(x﹣2)2﹣1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:直线l1与l2相交于点O,对于平面内任意一点P,点P到直线l1与l2的距离分别为p、q,则称有序实数对(p,q)是点P的“距离坐标”,根据上述定义,“距离坐标”是(3,2)的点的个数有______个。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com