【题目】如图,抛物线y=-x2+bx+c与x轴交于A、B两点,与y轴交于点C,点B坐标为(4,0),点C坐标为(0,4),点D是抛物线的顶点,过点D作x轴的垂线,垂足为E,连接BD.
(1)求抛物线的表达式及对称轴;
(2)点F是抛物线上的动点,当∠FBA=2∠BDE时,求点F的坐标;
(3)若点P是x轴上方抛物线上的动点,以PB为边作正方形PBGH,随着点P的运动,正方形的大小、位置也随着改变,当顶点G或H恰好落在y轴上时,请直接写出点P的横坐标.
【答案】(1),x=1;(2)(,)或(,-);(3)点P的横坐标为或0或2或2-
【解析】
(1)将点B、C的坐标代入抛物线表达式,即可求解;
(2)在线段DE上取点M,使MD=MB,此时∠EMB=2∠BDE,则∠FBA=∠EMB,即可求解;
(3)分点P在对称轴右侧、点P在对称轴左侧两种情况,利用三角形全等求解即可.
(1)根据题意得
∴
∴D的坐标(1,)即对称轴为x=1
(2)如图,在线段DE上选取点M,使得MD=MB.此时∠EMB=2∠BDE
设ME=a,在Rt△BME中,ME2BE2BM2.
即,解得a=
∴tan∠EMB=
过F作FN⊥x轴于点N,设F(m,-m2+m+4),则FN=|-m2+m+4|
∵∠FBA=2∠BDE,
∴∠FBA=∠EMB,
∴tan∠FBA=tan∠EMB=
∵B(4,0),E(1,0),
∴BE=3,BN=4/span>﹣m,即tan∠FBA=
当点F在x轴上方时,有12(4﹣m)=5(-m2+m+4),解得m1=4(舍),m2=
∴F的坐标(,)
当点F在x轴下方时,有-12(4﹣m)=5(-m2+m+4),解得m1=4(舍),m2=∴F的坐标(,-)
∴F的坐标(,)或(,-)
(3))①当点P在对称轴右侧时,
(Ⅰ)当点H在y轴上时,如图2,
∵∠MPB+∠CPH=90°,∠CPH+∠CHP=90°,
∴∠CHP=∠MPB,
∵∠BMP=∠PNH=90°,PH=BP,
∴△BMP≌△PNH(AAS),
∴MB=PC,
设点P(x,y),则x=y=-x2+x+4,
解得:x=±2(舍去负值),
故点P的横坐标为2;
(Ⅱ)当点G在y轴上时,如图3,
过点P作PR⊥x轴于点R,
同理可得:△PRB≌△BOG(AAS),
∴PR=OB=4,
即yP=4=-x2+x+4,
解得:x=2;
②当点P在对称轴左侧时,
同理可得:点P的横坐标为0或2-2;
综上,点P的横坐标为或0或2或2-
科目:初中数学 来源: 题型:
【题目】(1)问题背景:如图①,BC是⊙O的直径,点A在⊙O上,AB=AC,P为上一动点(不与B,C重合),求证:PA=PB+PC.请你根据图中所给的轴助线,给出作法并完成证明过程.
(2)类比迁移:如图②,⊙O的半径为3,点A,B在⊙O上,C为⊙O内一点,AB=AC,AB⊥AC,垂足为A,求OC的最小值
(3)拓展延伸:如图③,⊙O的半径为3,点A,B在⊙O上,C为⊙O内一点,AB= AC,AB⊥AC,垂足为A,则OC的最小值为____________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,△ABC是等腰直角三角形,四边形ADEF是正方形,D、F分别在AB、AC边上,此时BD=CF,BD⊥CF成立.
(1)当正方形ADEF绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明;若不成立,请说明理由.
(2)当正方形ADEF绕点A逆时针旋转45°时,如图3,延长BD交CF于点G, AC与BG的交点为M.求证:EM:DM=CG:AC;
(3)在(2)小题的条件下,当AB=4,AD=时,求四边形ABGF的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,AC=BC=4,∠ACB=90°,正方形BDEF的边长为2,将正方形BDEF绕点B旋转一周,连接AE、BE、CD.
(1)请找出图中与△ABE相似的三角形,并说明理由;
(2)求当点E在线段AF上时CD的长;
(3)设AE的中点为M,连接FM,试求FM长的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在平面直角坐标系中,点B的坐标为(1,0),以OB为边,在第一象限内作等边三角形OAB,过点A作AB的垂线,交x轴于点,过点作的垂线,交y轴于点,过点作的垂线,交x轴于点,过点作的垂线,交y轴于点,…,这样一直作下去,则点的坐标为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,开口向下的抛物线与轴交于点、,与轴交于点,点是第一象限内抛物线上的一点.
(1)求该抛物线所对应的函数解析式;
(2)设四边形的面积为,求的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,D是△ABC的BC边上一点,连接AD,作△ABD的外接圆,将△ADC沿直线AD折叠,点C的对应点E落在⊙O上.
(1)求证:AE=AB.
(2)填空:
①当∠CAB=90°,cos∠ADB=,BE=2时,边BC的长为 .
②当∠BAE= 时,四边形AOED是菱形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,为的直径,点是右侧半圆上的一个动点,点是左侧半圆的中点,是的切线,切点为,连接交于点.点为射线上一动点,连接,,.
(1)当时, 求证:.
(2)若的半径为,请填空:
①当四边形为正方形时,
②当 时, 四边形为菱形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】问题探究:
小红遇到这样一个问题:如图1,中,,,AD是中线,求AD的取值范围.她的做法是:延长AD到E,使,连接BE,证明,经过推理和计算使问题得到解决.
请回答:(1)小红证明的判定定理是:__________________________________________;
(2)AD的取值范围是________________________;
方法运用:
(3)如图2,AD是的中线,在AD上取一点F,连结BF并延长交AC于点E,使,求证:.
(4)如图3,在矩形ABCD中,,在BD上取一点F,以BF为斜边作,且,点G是DF的中点,连接EG,CG,求证:.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com