精英家教网 > 初中数学 > 题目详情
12.填空并完成推理过程.
如图,E点为DF上的点,B点为AC上的点,∠1=∠2,∠C=∠D,试说明:AC∥DF.
解:∵∠1=∠2,(已知)
∠1=∠3(对顶角相等)
∴∠2=∠3,(等量代换)
∴DB∥EC,(同位角相等,两直线平行)
∴∠C=∠ABD,(两直线平行,同位角相等)
又∵∠C=∠D,(已知)
∴∠D=∠ABD,(等量代换)
∴AC∥DF.(内错角相等,两直线平行)

分析 先证明BD∥CE,然后根据平行线的性质,以及已知条件证明∠D=∠ABD,根据同位角相等,两直线平行即可证得.

解答 解:∵∠1=∠2,(已知)
∠1=∠3(对顶角相等)
∴∠2=∠3,(等量代换)
∴DB∥EC,( 同位角相等,两直线平行)
∴∠C=∠ABD,( 两直线平行,同位角相等)
又∵∠C=∠D,(已知)
∴∠D=∠ABD,( 等量代换)
∴AC∥DF.( 内错角相等,两直线平行)
故答案为:对顶角相等,DB,EC,同位角相等,两直线平行,两直线平行,同位角相等,等量代换,内错角相等,两直线平行.

点评 解答此题的关键是注意平行线的性质和判定定理的综合运用.平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

4.如图,在Rt△ABC中,∠BAC=90°,AB=6,AC=8,AD是BC边上的高,以D为直角顶点的Rt△DEF绕点旋转,在旋转过程中,DE、EF分别与边AB、AC交于点M、N,则线段MN的最大值与最小值的差为$\frac{16}{5}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.如图,在长为6m,宽为4m的矩形地面上修建两条宽均为1m的道路,余下部分做为耕地,根据图中数据,计算耕地面积为15m2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.解不等式组:$\left\{\begin{array}{l}{x+2≤6,①}\\{3x-2≥2x,②}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.已知点A(m,-2),点B(3,m-1),且直线AB∥x轴,则m的值为(  )
A.-1B.1C.-3D.3

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.将1开始的自然数,按如图规律排列,在2、3、5、7、10、13、17、…处分别拐第1、2、3、4、5、6、7、…次弯,则第33次弯出的那一个数是(  )
A.290B.226C.272D.302

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.计算:
(1)$\sqrt{4}$-$\root{3}{8}$+$\sqrt{(-3)^{2}}$-($\sqrt{5}$)2
(2)$\sqrt{4}$+$\root{3}{8}$+(-1)2014-|1-$\sqrt{2}$|

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.解方程:
(1)x2+3-2$\sqrt{3}$x=0;                  
(2)x2-1=2(x+1).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.(1)计算:$\sqrt{12}$+2×(-5)+(-3)2+20160
(2)解方程:x2-2x=5.

查看答案和解析>>

同步练习册答案