【题目】如图,实线部分为某月牙形公园的轮廓示意图,它可看作是由⊙P上的一段优弧和⊙Q上的一段劣弧围成,⊙P与⊙Q的半径都是2km,点P在⊙Q上.
(1)求月牙形公园的面积;
(2)现要在公园内建一块顶点都在⊙P上的直角三角形场地ABC,其中∠C=90°,求场地的最大面积.
【答案】
(1)
解:连接DQ、EQ、PD、PE、PQ、DE.
由已知PD=PQ=DQ,
∴△DPQ是等边三角形.
∴∠DQP=60°.
同理∠EQP=60°.
∴∠DQE=120°,
∵⊙P和⊙Q交于D、E,
∴QP⊥DE,DF=EF,
∵△EPQ是等边三角形,
∴∠QDE=30°,
∴FQ= DQ=1,
由勾股定理得:DF= =EF,
即ED=2 ,
S弓形DPE=S扇形QDE﹣S△DQE
= ﹣ ×2 ×1
= ﹣ ,
故月牙形公园的面积=4π﹣2( π﹣ )=( π﹢2 )km2.
答:月牙形公园的面积为( π﹢2 )km2
(2)
解:∵∠C=90°,
∴AB是⊙P的直径,
过点C作CN⊥AB于点N,S△ABC= CNAB,
∵AB=4km,
∴S△ABC的面积取最大值就是CN长度取最大值,即CN=CP=2km,
S△ABC的面积最大值等于4km2,
故场地的最大面积为4km2
【解析】(1)连接DQ、EQ、PD、PE、PQ、DE,得出等边三角形DPQ和等边三角形EPQ,得出∠PQD=∠EQP=60°,根据相交两圆的性质得出DE⊥PQ,求出FQ和DF的值,求出DE,分别求出扇形DQE的面积和三角形DEQ的面积,即可求出弓形DPE的面积,根据圆的面积和弓形的面积求出答案即可;(2)根据∠ACB=90°得出AB是圆的直径,是2km,要使三角形ABC的面积最大得出只要高CN最大即可,得出CN的最大值是CP(P和N重合,CN最大),代入求出即可.
科目:初中数学 来源: 题型:
【题目】一个正方体,六个面上分别写有六个连续的整数(如图所示),且每两个相对面上的数字和相等,本图所能看到的三个面所写的数字分别是:,,,问:与它们相对的三个面的数字各是多少?为什么?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2012年4月23日是第17个世界读书日,《教育导报》记者就四川省农村中小学教师阅读状况进行了一次问卷调查,并根据调查结果绘制了教师每年阅读书籍数量的统计图(不完整).设x表示阅读书籍的数量(x为正整数,单位:本).其中A:1≤x≤3; B:4≤x≤6; C:7≤x≤9;D:x≥10.请你根据两幅图提供的信息解答下列问题:
(1)本次共调查了多少名教师?
(2)补全条形统计图;
(3)计算扇形统计图中扇形D的圆心角的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一只不透明的口袋中原来装有1个白球、2个红球,每个球除颜色外完全相同.则下列将袋中球增减的办法中,使得将球摇匀,从中任意摸出一个球,摸到白球与摸到红球的概率不相等为( )
A. 在袋中放入1个白球 B. 在袋中放入1个白球、2个红球
C. 在袋中取出1个红球 D. 在袋中放入2个白球、1个红球
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】今年某中学到鹅鼻嘴公园植树,已知该中学离公园约15km,部分学生骑自行车出发40分钟后,其余学生乘汽车出发,汽车速度是自行车速度的3倍,全体学生同时到达,设自行车的速度为v km/h.
(1) 求v的值;
(2) 植树活动完成后,由于学生比较劳累,骑自行车的学生的速度变为原来的,汽车速度不变,为了使两批学生同时到达学校,那么骑自行的学生应该提前多少时间出发.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,将△ABC纸片沿中位线EH折叠,使点A对称点D落在BC边上,再将纸片分别沿等腰△BED和等腰△DHC的底边上的高线EF,HG折叠,折叠后的三个三角形拼合形成一个矩形,类似地,对多边形进行折叠,若翻折后的图形恰能拼合成一个无缝隙、无重叠的矩形,这样的矩形称为叠合矩形.
(1)将□ABCD纸片按图2的方式折叠成一个叠合矩形AEFG,则操作形成的折痕分别是线段_______,_________;S矩形AEFG:S□ABCD=__________.
(2)□ABCD纸片还可以按图3的方式折叠成一个叠合矩形EFGH,若EF=5,EH=12,求AD的长;
(3)如图4,四边形ABCD纸片满足AD∥BC,AD<BC,AB⊥BC,AB=8,CD=10,小明把该纸片折叠,得到叠合正方形,请你帮助画出一种叠合正方形的示意图,并求出AD、BC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,如图①,∠MON=60°,点A,B为射线OM,ON上的动点(点A,B不与点O重合),且AB=4 ,在∠MON的内部,△AOB的外部有一点P,且AP=BP,∠APB=120°.
(1)求AP的长;
(2)求证:点P在∠MON的平分线上.
(3)如图②,点C,D,E,F分别是四边形AOBP的边AO,OB,BP,PA的中点,连接CD,DE,EF,FC,OP.
①当AB⊥OP时,请直接写出四边形CDEF的周长的值;
②若四边形CDEF的周长用t表示,请直接写出t的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com