精英家教网 > 初中数学 > 题目详情

【题目】如图,已知∠ABC=∠DCB,添加一个条件,使△ABC≌△DCB,你添加的条件是_____.(注:只需写出一个条件即可)

【答案】A=D

【解析】

全等三角形的判定定理有SAS,ASA,AAS,SSS,根据定理解答即可.

添加的条件为:∠A=∠DAB=DCOB=OC;
∠A=∠D,∠ABC=∠DCB,BC=BC,符合AAS定理,即能推出△ABC≌△DCB,
AB=DC,∠ABC=∠DCB,BC=BC,符合SAS定理,即能推出△ABC≌△DCB,
∵OB=OC,
∴∠DBC=∠ACB,
∵∠ABC=∠DCB,
∴∠ABO=∠DCO,
∵∠AOB=∠DOC,∠A+∠ABO+∠AOB=180°,∠D+∠DCO+∠DOC=180°,
∴∠A=∠D,
∵∠A=∠D,∠ABC=∠DCB,BC=BC,符合AAS定理,
∴能推出△ABC≌△DCB;
故答案是:∠A=∠D

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】若关于x的方程4(2﹣x)+x=ax的解为正整数,且关于x的不等式组 有解,则满足条件的所有整数a的值之和是(  )

A. 4 B. 0 C. ﹣1 D. ﹣3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在购买某场足球赛门票时,设购买门票数为x(张),总费用为y(元).现有两种购买方案:

方案一:若单位赞助广告费10000元,则该单位所购门票的价格为每张60元;

(总费用=广告赞助费+门票费)

方案二:购买门票方式如图所示.

解答下列问题:

(1)方案一中,y与x的函数关系式为

方案二中,当0x100时,y与x的函数关系式为

当x>100时,y与x的函数关系式为

(2)如果购买本场足球赛门票超过100张,你将选择哪一种方案,使总费用最省?请说明理由;

(3)甲、乙两单位分别采用方案一、方案二购买本场足球赛门票共700张,花去总费用计58000元,求甲、乙两单位各购买门票多少张.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线l1y1=x+my轴交于点A06),直线l2y=kx+1分别与x轴交于点B20),与y轴交于点C,两条直线交点记为D

1m=   k=   

2)求两直线交点D的坐标;

3)根据图象直接写出y1y2时自变量x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,定义直线x=m与双曲线yn=的交点Am , n(m、n为正整数)为“双曲格点”,双曲线yn=在第一象限内的部分沿着竖直方向平移或以平行于x轴的直线为对称轴进行翻折之后得到的函数图象为其“派生曲线”.

(1)①“双曲格点”A2 , 1的坐标为 ;②若线段A4 , 3A4 , n的长为1个单位长度,则n=
(2)图中的曲线f是双曲线y1=的一条“派生曲线”,且经过点A2 , 3 , 则f的解析式为y=
(3)画出双曲线y3=的“派生曲线”g(g与双曲线y3=不重合),使其经过“双曲格点”A2 , a、A3 , 3、A4 , b

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图.在一条不完整的数轴上一动点A向左移动4个单位长度到达点B,再向右移动7个单位长度到达点C.

(1)若点A表示的数为0,求点B、点C表示的数;

(2)若点C表示的数为5,求点B、点A表示的数;

(3)如果点A、C表示的数互为相反数,求点B表示的数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,P是线段AB上任一点,AB=12 cm,C、D两点分别从P、B同时向A点运动,且C点的运动速度为2 cm/s,D点的运动速度为3 cm/s,运动的时间为t s.

(1)若AP=8 cm.

①运动1 s后,求CD的长;

②当D在线段PB运动上时,试说明AC=2CD;

(2)如果t=2 s时,CD=1 cm,试探索AP的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知ABCD,现将一直角三角形PMN放入图中,其中P=90°,PM交AB于点E,PN交CD于点F

(1)当PMN所放位置如图所示时,则PFD与AEM的数量关系为   

(2)当PMN所放位置如图所示时,求证:∠PFD﹣∠AEM=90°;

(3)在(2)的条件下,若MN与CD交于点O,且∠DON=30°,∠PEB=15°,求N的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,实线部分为某月牙形公园的轮廓示意图,它可看作是由⊙P上的一段优弧和⊙Q上的一段劣弧围成,⊙P与⊙Q的半径都是2km,点P在⊙Q上.

(1)求月牙形公园的面积;
(2)现要在公园内建一块顶点都在⊙P上的直角三角形场地ABC,其中∠C=90°,求场地的最大面积.

查看答案和解析>>

同步练习册答案