精英家教网 > 初中数学 > 题目详情

【题目】在购买某场足球赛门票时,设购买门票数为x(张),总费用为y(元).现有两种购买方案:

方案一:若单位赞助广告费10000元,则该单位所购门票的价格为每张60元;

(总费用=广告赞助费+门票费)

方案二:购买门票方式如图所示.

解答下列问题:

(1)方案一中,y与x的函数关系式为

方案二中,当0x100时,y与x的函数关系式为

当x>100时,y与x的函数关系式为

(2)如果购买本场足球赛门票超过100张,你将选择哪一种方案,使总费用最省?请说明理由;

(3)甲、乙两单位分别采用方案一、方案二购买本场足球赛门票共700张,花去总费用计58000元,求甲、乙两单位各购买门票多少张.

【答案】(1)y=60x+10000,y=100x,y=80x+2000;(2)方案一,理由见解析;(3)500张、200张.

【解析】

试题分析:(1)依题意可得y与x的函数关系式y=60x+10000;本题考查了分段函数的有关知识(0x100;x>100);

(2)设60x+10000>80x+2000,可用方案二买;当60x+1000=80x+2000时,两种方案均可选择;当60x+1000<80x+200时,可选择方案一;

(3)设甲、乙单位购买本次足球赛门票数分别为a张、b张,分别可采用方案一或方案二购买.

试题解析:(1)方案一:y=60x+10000;当0x100时,y=100x;当x>100时,y=80x+2000;

(2)因为方案一y与x的函数关系式为y=60x+10000,x>100,方案二的y与x的函数关系式为y=80x+2000;

当60x+10000>80x+2000时,即x<400时,选方案二进行购买,当60x+10000=80x+2000时,即x=400时,两种方案都可以,当60x+10000<80x+2000时,即x>400时,选方案一进行购买;

(3)设甲、乙单位购买本次足球赛门票数分别为a张、b张;

甲、乙单位分别采用方案一和方案二购买本次足球比赛门票,

乙公司购买本次足球赛门票有两种情况:b100或b>100.

当b100时,乙公司购买本次足球赛门票费为100b,

解得,不符合题意,舍去;

当b>100时,乙公司购买本次足球赛门票费为80b+2000,

解得,符合题意.

答:甲、乙单位购买本次足球赛门票分别为500张、200张.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知,垂足为,将线段绕点按逆时针方向旋转,得到线段,连接.

(1)线段

(2)求线段的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个钝角为100° 的菱形,剪口与折痕所成的角的度数应为(  )

A. 25°50° B. 20°50° C. 40°50° D. 40°80°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知a是最大的负整数,b是多项式2m2n-m3n2-m-2的次数,c是单项式-2xy2的系数,且a,b,c分别是点A,B,C在数轴上对应的数.

(1)求a,b,c的值,并在数轴上标出点A,B,C;

(2)若动点P,Q同时从A,B出发沿数轴负方向运动,点P的速度是每秒个单位长度,点Q的速度是每秒2个单位长度,求运动几秒后,点Q可以追上点P?

(3)在数轴上找一点M,使点M到A,B,C三点的距离之和等于10,请直接写出所有点M对应的数.(不必说明理由)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:甲、乙两车分别从相距300千米的 A,B两地同时出发相向而行,其中甲到 B地后立即返回,下图是它们离各自出发地的距离y(千米)与行驶时间x(小时)之间的函数图象

(1)求甲车离出发地的距离 y(千米)与行驶时间x(小时)之间的函数关系式,并写出自变量的取值范围;

(2)当它们行驶到与各自出发地的距离相等时,用了 小时,求乙车离出发地的距离 y(千米)与行驶时间 x(小时)之间的函数关系式;

(3)在(2)的条件下,求它们在行驶的过程中相遇的时间.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】把一副三角板如图放置 其中∠ACB=DEC=90A=45D=30斜边 AB=4CD=5把三角板DCE绕点C顺时针旋转15得到三角形D1CE (如图二)此时ABCD1交于点O,则线段AD1的长度为( )

A. B. C. D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,C、D是圆上的两点.若BC=8,cosD= , 则AB的长为(  )

A.
B.
C.
D.12

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知∠ABC=∠DCB,添加一个条件,使△ABC≌△DCB,你添加的条件是_____.(注:只需写出一个条件即可)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个正方体,六个面上分别写有六个连续的整数(如图所示),且每两个相对面上的数字和相等,本图所能看到的三个面所写的数字分别是:,问:与它们相对的三个面的数字各是多少?为什么?

查看答案和解析>>

同步练习册答案