精英家教网 > 初中数学 > 题目详情

【题目】如图,坡AB的坡比为1:2.4,坡长AB=130米,坡AB的高为BT.在坡AB的正面有一栋建筑物CH,点H、A、T在同一条地平线MN上.

(1)试问坡AB的高BT为多少米?

(2)若某人在坡AB的坡脚A处和中点D处,观测到建筑物顶部C处的仰角分别为60°30°,试求建筑物的高度CH.(精确到米, ≈1.73, ≈1.41)

【答案】(1)坡AB的高BT为50米;(2)建筑物高度为89米

【解析】试题分析:(1)根据坡AB的坡比为1:2.4,可得tanBAT=,可设TB=h,AT=2.4h,由勾股定理可得,即可求解,(2) DKMNK,DLCHL, ADK,AD=AB=65,KD=BT=25,AK=60,DCL,CDL=30°,CL=x,LD= , 易知四边形DLHK是矩形,LH=DK,LD=HK,ACH,CAH=60°,CH=x+25,AH=, 所以,解得,CH=.

试题解析:1)在ABT,ATB=90°,BT:AT=1:2.4,AB=130,

TB=h,AT=2.4h,

,

解得h=50(舍负).

:AB的高BT50.

2)作DKMNK,DLCHL,

ADK,AD=AB=65,KD=BT=25,AK=60,

DCL,CDL=30°,CL=x,LD= ,

易知四边形DLHK是矩形,LH=DK,LD=HK,

ACH,CAH=60°,CH=x+25,AH=,

所以,解得,

CH=.

:建筑物高度为89.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图所示,ABC和ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,EC的延长线交BD于点P.

(1)把ABC绕点A旋转到图1,BD,CE的关系是   (选填“相等”或“不相等”);简要说明理由;

(2)若AB=3,AD=5,把ABC绕点A旋转,当EAC=90°时,在图2中作出旋转后的图形,PD=   ,简要说明计算过程;

(3)在(2)的条件下写出旋转过程中线段PD的最小值为   ,最大值为   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,四边形OABC的顶点O是坐标原点,点A在第一象限,点C在第四象限,点Bx轴的正半轴上.∠OAB90°OAABOBOC的长分别是二元一次方程组的解(OBOC).

1)求点A和点B的坐标;

2)点P是线段OB上的一个动点(点P不与点OB重合),过点P的直线ly轴平行,直线l交边OA或边AB于点Q,交边OC或边BC于点R.设点P的横坐标为t,线段QR的长度为m.已知t4时,直线l恰好过点C

①当0t3时,求m关于t的函数关系式;

②当m时,求点P的横坐标t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读材料:如图①,在平面直角坐标系中,AB两点的坐标分别为A(x1y1)B(x2y2)AB的中点P的坐标为(xpyp).由xpx1x2xp,得xp,同理得yp,所以AB的中点坐标为P(,).由勾股定理得AB2|x2x1|2|y2y1|2,所以AB两点间的距离公式为AB.

注:上述公式对AB在平面直角坐标系中其他位置也成立.

解答下列问题:

如图②,抛物线yax2bx3(a≠0)x轴交于AB两点,与y轴交于点C,且BOOC3AO,连接BC.

(1)求抛物线的表达式;

(2)在抛物线的对称轴上是否存在点P,使PBC是等腰三角形?若存在,试求出符合条件的P点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(本题8分)如图,已知抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0)和点B(3,0),与y轴交于点C,连接BC交抛物线的对称轴于点E,D是抛物线的顶点.

(1)求此抛物线的解析式;

(2)直接写出点C和点D的坐标;

(3)若点P在第一象限内的抛物线上,且S△ABP=4S△COE,求P点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场第1次用39万元购进AB两种商品,销售完后获得利润6万元,它们的进价和售价如下表:(总利润=单件利润×销售量)

(1)该商场第1次购进AB两种商品各多少件?

(2)商场第2次以原价购进AB两种商品,购进A商品的件数不变,而购进B商品的件数是第1次的2倍,A商品按原价销售,而B商品打折销售,若两种商品销售完毕,要使得第2次经营活动获得利润等于54000元,则B种商品是打几折销售的?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图已知线段ABCD的公共部分BD=AB= CD线段ABCD的中点EF之间距离是10cmABCD的长

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】中小学时期是学生身心变化最为明显的时期,这个时期孩子们的身高变化呈现一定的趋势,7~15岁期间生子们会经历一个身高发育较迅速的阶段,我们把这个年龄阶段叫做生长速度峰值段,小明通过上网查阅《2016年某市儿童体格发育调查表》,了解某市男女生7~15岁身高平均值记录情况,并绘制了如下统计图,并得出以下结论:

10岁之前,同龄的女生的平均身高一般会略高于男生的平均身高;

②10~12岁之间,女生达到生长速度峰值段,身高可能超过同龄男生

7~15岁期间,男生的平均身高始终高于女生的平均身高

④13~15岁男生身高出现生长速度峰值段,男女生身高差距可能逐渐加大.

以上结论正确的是(

A. ①③ B. ②③ C. ②④ D. ③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC中,AB=ACCDBC于点C,交ABC的平分线于点DAE平分BACBD于点E,过点EEFBCAC于点F,连接DF

(1)补全图1;

(2)如图1,当∠BAC=90°时,

求证:BE=DE

写出判断DFAB的位置关系的思路(不用写出证明过程);

(3)如图2,当∠BAC=α时,直接写出αDFAE的关系.

查看答案和解析>>

同步练习册答案