【题目】如图,在平面直角坐标系中,抛物线y=ax2+2x+c与x轴交于A(﹣1,0)B(3,0)两点,与y轴交于点C,点D是该抛物线的顶点.
(1)求抛物线的解析式和直线AC的解析式;
(2)请在y轴上找一点M,使△BDM的周长最小,求出点M的坐标;
(3)试探究:在拋物线上是否存在点P,使以点A,P,C为顶点,AC为直角边的三角形是直角三角形?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.
【答案】(1)抛物线解析式为y=﹣x2+2x+3;直线AC的解析式为y=3x+3;(2)点M的坐标为(0,3);
(3)符合条件的点P的坐标为(,)或(,﹣),
【解析】(1)设交点式y=a(x+1)(x-3),展开得到-2a=2,然后求出a即可得到抛物线解析式;再确定C(0,3),然后利用待定系数法求直线AC的解析式;
(2)利用二次函数的性质确定D的坐标为(1,4),作B点关于y轴的对称点B′,连接DB′交y轴于M,如图1,则B′(-3,0),利用两点之间线段最短可判断此时MB+MD的值最小,则此时△BDM的周长最小,然后求出直线DB′的解析式即可得到点M的坐标;
(3)过点C作AC的垂线交抛物线于另一点P,如图2,利用两直线垂直一次项系数互为负倒数设直线PC的解析式为y=-x+b,把C点坐标代入求出b得到直线PC的解析式为y=-x+3,再解方程组得此时P点坐标;当过点A作AC的垂线交抛物线于另一点P时,利用同样的方法可求出此时P点坐标.
(1)设抛物线解析式为y=a(x+1)(x﹣3),
即y=ax2﹣2ax﹣3a,
∴﹣2a=2,解得a=﹣1,
∴抛物线解析式为y=﹣x2+2x+3;
当x=0时,y=﹣x2+2x+3=3,则C(0,3),
设直线AC的解析式为y=px+q,
把A(﹣1,0),C(0,3)代入得,解得,
∴直线AC的解析式为y=3x+3;
(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,
∴顶点D的坐标为(1,4),
作B点关于y轴的对称点B′,连接DB′交y轴于M,如图1,则B′(﹣3,0),
∵MB=MB′,
∴MB+MD=MB′+MD=DB′,此时MB+MD的值最小,
而BD的值不变,
∴此时△BDM的周长最小,
易得直线DB′的解析式为y=x+3,
当x=0时,y=x+3=3,
∴点M的坐标为(0,3);
(3)存在.
过点C作AC的垂线交抛物线于另一点P,如图2,
∵直线AC的解析式为y=3x+3,
∴直线PC的解析式可设为y=﹣x+b,
把C(0,3)代入得b=3,
∴直线PC的解析式为y=﹣x+3,
解方程组,解得或,则此时P点坐标为(,);
过点A作AC的垂线交抛物线于另一点P,直线PC的解析式可设为y=﹣x+b,
把A(﹣1,0)代入得+b=0,解得b=﹣,
∴直线PC的解析式为y=﹣x﹣,
解方程组,解得或,则此时P点坐标为(,﹣).
综上所述,符合条件的点P的坐标为(,)或(,﹣).
科目:初中数学 来源: 题型:
【题目】如图①,在矩形ABCD中,AB<AD,对角线AC,BD相交于点O,动点P由点A出发,沿AB-BC→CD向点D运动设点P的运动路程为x,△AOP的面积为y,y与x的函数关系图象如图②所小示,则AD的长为________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某中学在全校学生中开展了“地球—我们的家园”为主题的环保征文比赛,评选出一、二、三等奖和优秀奖。根据奖项的情况绘制成如图所示的两幅不完整的统计图,请你根据图中提供的信息解答下列问题:
(1)求校获奖的总人数,并把条形统计图补充完整;
(2)求在扇形统计图中表示“二等奖” 的扇形的圆心角的度数;
(3)获得一等奖的4名学生中有3男1女,现打算从中随机选出2名学生参加颁奖活动,请用列表或画树状图的方法求选出的2名学生恰好是1男1女的概率﹒
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知等边△ABC的边长为8,以AB为直径的圆交BC于点F.以C为圆心,CF长为半径作图,D是⊙C上一动点,E为BD的中点,当AE最大时,BD的长为( )
A. B. C. D. 12
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y = x2+bx+c过点A (-1,2),且关于y轴对称,点C与点B(a,0)(a>1)关于原点对称,直线AC交抛物线于点D.
(1)求此抛物线的解析式;
(2)连接OA,BD,当OA//BD时,求a的值;
(3)若直线AC交抛物线于E,F两点(点E在点F的左侧),且EA=DF,求直线AC的解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的方程
(1)求证:不论k取什么实数值,这个方程总有实数根;
(2)若等腰三角形ABC的一边长为,另两边的长b、c恰好是这个方程的两个根,求△ABC的周长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某体育文化用品商店购进篮球和排球共200个,进价和售价如下表全部销售完后共获利润2600元.
(1)求商店购进篮球和排球各多少个?
(2)王老师在元旦节这天到该体育文化用品商店为学校买篮球和排球各若干个(两种球都买了),商店在他的这笔交易中获利100元王老师有哪几种购买方案.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】智能手机如果安装了一款测量软件“SmartMeasure”后,就可以测量物高、宽度和面积等.如图,打开软件后将手机摄像头的屏幕准星对准脚部按键,再对准头部按键,即可测量出人体的高度.其数学原理如图②所示,测量者AB与被测量者CD都垂直于地面BC.若手机显示AC=1m,AD=1.8m,∠CAD=60°,求此时CD的高.(结果保留根号)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com