【题目】如图,D是△ABC外接圆上的点,且B,D位于AC的两侧,DE⊥AB,垂足为E,DE的延长线交此圆于点F.BG⊥AD,垂足为G,BG交DE于点H,DC,FB的延长线交于点P,且PC=PB.
(1)求证:∠BAD=∠PCB;
(2)求证:BG//CD;
(3)设△ABC外接圆的圆心为O,连接OD,OH,若弦BC的长等于圆的半径,∠COD=20°,求∠OHD的度数.
【答案】(1)见解析;(2)见解析;(3)70
【解析】
(1)根据等腰三角形的性质和圆内接四边形的性质即可得到结论;
(2)由(1)得∠BAD=∠PCB,结合等腰三角形的性质及同弧所对的圆周角相等可得∠BFD=∠PBC,根据平行线的判定得:BC∥DF,可得∠ABC=90°,根据圆周角定理得到AC是⊙O的直径,可证∠ADC=∠AGB=90°,即可得证;
(3)连接OB,由(2)可得点O在AC的中点.由弦BC的长等于圆的半可得三角形OBC为等边三角形,∠OCB=60°,则∠BAC=30°,因为∠COD=20°,故可求得∠ODA=∠OAD=10°,则∠ADH=50°,求得∠ODH=40°,
由(2)可证四边形DHBC为平行四边形,所以DH=BC=OD,即可根据等腰三角形的性质和三角形的内角和定理求出∠OHD.
(1) ∵PC=PB,
∴∠PCB=∠PBC,
∵四边形ABCD内接于圆,
∴∠BAD+∠BCD=180°,
∵∠BCD+∠PCB=180°,
∴∠BAD=∠PCB;
(2)由(1)得∠BAD=∠PCB,
∵∠BAD=∠BFD,
∴∠BFD=∠PCB=∠PBC,
∴BC∥DF,
∵DE⊥AB,
∴∠DEB=90°,
∴∠ABC=90°,
∴AC是⊙O的直径,
∴∠ADC=90°,
∵BG⊥AD,
∴∠AGB=90°,
∴∠ADC=∠AGB,
∴BG∥CD;
(3)连接OB,由(2)可得:点O在AC的中点.
∵弦BC的长等于圆的半径
∴△OBC为等边三角形
∴∠OCB=60°
由(2)得:∠ABC=90°,
∴∠BAC=30°
∵∠COD=20°
∴∠ODA=∠OAD=∠COD=10°
∴∠ADE=90°-30°-10°=50°
∴∠ODH=∠ADH-∠ADO=40°
由(2)得:DF∥BC,BG∥CD
∴四边形DHBC为平行四边形
∴DH=BC=OD
∴∠OHD=
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线的顶点为A(1,4),抛物线与y轴交于点B(0,3),与x轴交于C、D两点.点P是x轴上的一个动点.
(1)求此抛物线的解析式;
(2)求C、D两点坐标及△BCD的面积;
(3)若点P在x轴上方的抛物线上,满足S△PCD=S△BCD,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,经过点A的双曲线y=(x>0)同时经过点B,且点A在点B的左侧,点A的横坐标为1,∠AOB=∠OBA=45°,则k的值为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在中,,.点是平面内不与点,重合的任意一点.连接,将线段绕点逆时针旋转得到线段,连接,,.
(1)观察猜想
如图1,当时,的值是______,直线与直线相交所成的较小角的度数是____________.(提示:求角度时可考虑延长交的延长线于)
(2)类比探究
如图2,当时,请写出的值及直线与直线相交所成的小角的度数,并就图2的情形说明理由.
(3)解决问题
当时,若点,分别是,的中点,点在直线上,请直接写出点,,在同一直线上时的值_______________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中xOy中,已知点A的坐标是(0,1),以OA为边在右侧作等边三角形OAA1,过点A1作x轴的垂线,垂足为点O1,以O1A1为边在右侧作等边三角形O1A1A2,再过点A2作x轴的垂线,垂足为点O2,以O2A2为边在右侧作等边三角形O2A2A3,…,按此规律继续作下去,得到等边三角形O2018A2018A2019,则点A2019的纵坐标为( )
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2016年3月国际风筝节期间,王大伯决定销售一批风筝,经市场调研:蝙蝠型风筝进价每个为10元,当售价每个为12元时,销售量为180个,若售价每提高1元,销售量就会减少10个,请回答以下问题:
(1)用表达式表示蝙蝠型风筝销售量y(个)与售价x(元)之间的函数关系(12≤x≤30);
(2)王大伯为了让利给顾客,并同时获得840元利润,售价应定为多少?
(3)当售价定为多少时,王大伯获得利润W最大,最大利润是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形中,是边上的一点,,,将正方形边沿折叠到,延长交于.连接,现在有如下四个结论:①;②;③∥;④; 其中结论正确的个数是( )
A.1B.2
C.3D.4
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com