【题目】如图,已知是的直径,点、在上,且,过点作,垂足为.
求的长;
若的延长线交于点,求弦、和弧围成的图形(阴影部分)的面积.
【答案】(1)OE=;(2)阴影部分的面积为
【解析】
(1)由题意不难证明OE为△ABC的中位线,要求OE的长度即要求BC的长度,根据特殊角的三角函数即可求得;(2)由题意不难证明△COE≌△AFE,进而将要求的阴影部分面积转化为扇形FOC的面积,利用扇形面积公式求解即可.
解:(1) ∵AB是⊙O的直径,
∴∠ACB=90°,
∵OE⊥AC,
∴OE//BC,
又∵点O是AB中点,
∴OE是△ABC的中位线,
∵∠D=60°,
∴∠B=60°,
又∵AB=6,
∴BC=AB·cos60°=3,
∴OE= BC=;
(2)连接OC,
∵∠D=60°,
∴∠AOC=120°,
∵OF⊥AC,
∴AE=CE,=,
∴∠AOF=∠COF=60°,
∴△AOF为等边三角形,
∴AF=AO=CO,
∵在Rt△COE与Rt△AFE中,
,
∴△COE≌△AFE,
∴阴影部分的面积=扇形FOC的面积,
∵S扇形FOC==π.
∴阴影部分的面积为π.
科目:初中数学 来源: 题型:
【题目】如图,A(0,4)是直角坐标系y轴上一点,动点P从原点O出发,沿x轴正半轴运动,速度为每秒1个单位长度,以P为直角顶点在第一象限内作等腰Rt△APB.设P点的运动时间为t秒.
(1)若AB∥x轴,如图1,求t的值;
(2)设点A关于x轴的对称点为A′,连接A′B,在点P运动的过程中,∠OA′B的度数是否会发生变化,若不变,请求出∠OA′B的度数,若改变,请说明理由.
(3)如图2,当t=3时,坐标平面内有一点M(不与A重合)使得以M、P、B为顶点的三角形和△ABP全等,请直接写出点M的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有三张卡片(背面完全相同)分别写有,,,把它们背面朝上洗匀后,小军从中抽取一张,记下这个数后放回洗匀,小明又从中抽出一张.
两人抽取的卡片上的数是的概率是________.
李刚为他们俩设定了一个游戏规则:若两人抽取的卡片上两数之积是有理数,则小军获胜,否则小明获胜,你认为这个游戏规则对谁有利?请用列表法或树状图进行分析说明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知A(3,0),B(0,-1),连接AB,过B点作AB的垂线段,使BA=BC,连接AC.
(1)如图1,求C点坐标;
(2)如图2,若P点从A点出发,沿x轴向左平移,连接BP,作等腰直角三角形△BPQ,连接CQ.求证:PA=CQ.
(3)在(2)的条件下,若C、P、Q三点共线,求此时P点坐标及∠APB的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】4张相同的卡片分别写着数字-1、-3、4、6,将卡片的背面朝上,并洗匀.
(1)从中任意抽取1张,抽到的数字是奇数的概率是________;
(2)从中任意抽取1张,并将所取卡片上的数字记作一次函数中的k;再从余下的卡片中任意抽取1张,并将所取卡片上的数字记作一次函数中的b.利用画树状图或列表的方法,求这个一次函数的图象经过第一、二、四象限的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,AD∥BC,E是AB的中点,连接DE并延长交CB的延长线于点F,点G在边BC上,且∠GDF=∠ADF.
(1)求证:△ADE≌△BFE;
(2)连接EG,判断EG与DF的位置关系并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com