精英家教网 > 初中数学 > 题目详情

【题目】在数学活动课上,小明提出这样一个问题:如图,∠BC=90°,EBC的中点,DE平分∠ADCCED=35°,则∠EAB的度数是_____

【答案】35°

【解析】

过点EEF⊥ADF,根据角平分线上的点到角的两边的距离相等可得CE=EF,再根据到角的两边距离相等的点在角的平分线上可得AE是∠BAD的平分线,然后求出=∠AEB,再根据直角三角形两锐角互余求解即可.

过点EEF⊥ADF,

∵DE平分∠ADC,

∴CE=EF,

∵EBC的中点,

∴CE=BE,

∴BE=EF,

∴AE是∠BAD的平分线,

∵∠CED=35°,

∴∠AEB=90°﹣∠CED=90°﹣35°=55°,

∵∠B=90°,

∴∠EAB=90°﹣55°=35°,

故答案为:35°.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.
(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;
(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?
(3)如果该企业要使每天的销售利润不低于4000元,且每天的总成本不超过7000元,那么销售单价应控制在什么范围内?(每天的总成本=每件的成本×每天的销售量)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知长方形ABCO中,边AB=12BC=8.以点0为原点,OAOC所在的直线为y轴和x轴建立直角坐标系.

1)点A的坐标为(08),写出BC两点的坐标;

2)若点PC点出发,以3单位/秒的速度向CO方向移动(不超过点O),点Q从原点O出发,以2单位/秒的速度向OA方向移动(不超过点A),设PQ两点同时出发,在它们移动过程中,四边形OPBQ的面积是否发生变化?若不变,求其值;若变化,求变化范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)化简求值:(2+a)(2-a)+a(a-2b)+3a5b÷(-a2b)4,其中ab=-.

(2)因式分解:a(n-1)2-2a(n-1)+a.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列多项式的乘法中,能用平方差公式计算的是( )

A. (-m +n)(m - n) B. a +b)(b -a)

C. (x + 5)(x + 5) D. (3a -4b)(3b +4a)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场经营某种品牌的玩具,购进时的单价是30元,根据市场调查:在一段时间内,销售单价是40元时,销售量是600件,而销售单价每涨1元,就会少售出10件玩具.
(1)不妨设该种品牌玩具的销售单价为x元(x>40),请你分别用x的代数式来表示销售量y件和销售该品牌玩具获得利润w元,并把结果填写在表格中:

(2)在(1)条件下,若商场获得了10000元销售利润,求该玩具销售单价x应定为多少元.
(3)在(1)条件下,若玩具厂规定该品牌玩具销售单价不低于44元,且商场要完成不少于540件的销售任务,求商场销售该品牌玩具获得的最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切于点D,CE⊥AD,交AD的延长线于点E.
(1)求证:∠BDC=∠A;
(2)若CE=4,DE=2,求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】随着人们环保意识的增强,低碳生活成为人们提倡的生活方式,黄先生要从某地到福州,若乘飞机需要3小时,乘汽车需要9小时.这两种交通工具每小时排放的二氧化碳总量为70千克,已知飞机每小时二氧化碳的排放量比汽车多44千克,黄先生若乘汽车去福州,那么他此行与乘飞机相比减少二氧化碳排放量多少千克?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AH是⊙O的直径,矩形ABCD交⊙O于点E,连接AE,将矩形ABCD沿AE折叠,点B落在CD边上的点F处,画直线EF.
(1)求证:直线EF是⊙O的切线.
(2)若CD=10,EB=5,求⊙O的直径.

查看答案和解析>>

同步练习册答案