精英家教网 > 初中数学 > 题目详情

【题目】某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.
(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;
(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?
(3)如果该企业要使每天的销售利润不低于4000元,且每天的总成本不超过7000元,那么销售单价应控制在什么范围内?(每天的总成本=每件的成本×每天的销售量)

【答案】
(1)解:由题意可得:(1)y=(x-50)[50+5(100-x)]

=(x-50)(-5x+550)

=-5x2+800x-27500

之间的函数关系为:


(2)解:y=-5x2+800x-27500

=-5(x-80)2+4500

a=-5<0,

∴抛物线开口向下.

∵50≤ ≤100,对称轴是直线 =80,

∴当 =80时, 最大=4500.


(3)解:当 =4000时,-5( -80)2+4500=4000,解得 =70, =90,

又∵ 的图象开口向下,

∴当70≤ ≤90时,每天的销售利润不低于4000元.

由每天的总成本不超过7000元,得50(-5 +550)≤7000,解得 ≥82,

∴82≤ ≤90,

∵50≤ ≤100,

∴销售单价应该控制在82元至90元(包括端点)之间.


【解析】(1)根据每天的销售利润y=每一件的利润每天的销售量,即可求出函数解析式。
(2)求出(1)中函数的顶点坐标,即可求出结论。
(3)先求出y=4000时对应的自变量x的值,结合二次函数的性质,得出每天的销售利润不低于4000元时自变量的取值范围;再根据每天的总成本≤7000,建立不等式求解,即可求出销售单价应控制的范围。

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在 中,∠CAB=70°,在同一平面内, 将 绕点A旋转到 的位置,使得CC′∥AB,则 =( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图象解答下列问题:

(1)写出方程ax2+bx+c=0的两个根;
(2)写出不等式ax2+bx+c<0的解集;
(3)若方程ax2+bx+c+k=0有两个不相等的实数根,求k的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】试根据图中信息,解答下列问题.

(1)一次性购买6根跳绳需_____元,一次性购买12根跳绳需______元;

(2)小红比小明多买2根,付款时小红反而比小明少5元,你认为有这种可能吗?若有,请求出小红购买跳绳的根数;若没有,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知在四边形ABCD中,点EF分别是BCCD边上的一点.

(1)如图1:当四边形ABCD是正方形时,且∠EAF=45°,则EFBEDF满足的数量关系是   ,请说明理由;

(2)如图2:当ABAD,∠B=∠D=90°,∠EAF是∠BAD的一半,问:(1)中的数量关系是否还存在?   (填是或否)

(3)在(2)的条件下,将点E平移到BC的延长线上,请在图3中补全图形,并写出EFBEDF的关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,已知一次函数y=﹣x+6与xy轴分别交于AB两点,点C(0,n)是线段BO上一点,将△AOB沿直线AC折叠,点B刚好落在x轴负半轴上,则点C的坐标是(  )

A. (0,3) B. (0, C. (0, D. (0,

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y=ax2+bx+c(a<0)的对称轴为x=1,交x轴的一个交点为(x1 , 0),且﹣1<x1<0,有下列5个结论:①abc>0;②9a﹣3b+c<0;③2c<3b;④(a+c)2<b2;⑤a+b>m(am+b)(m≠1的实数)其中正确的结论有( )

A.1个
B.2个
C.3个
D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,CDAB边上高,若AD=16CD=12BD=9

1)求ABC的周长;

2)判断ABC的形状并加以证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在数学活动课上,小明提出这样一个问题:如图,∠BC=90°,EBC的中点,DE平分∠ADCCED=35°,则∠EAB的度数是_____

查看答案和解析>>

同步练习册答案