【题目】已知在四边形ABCD中,点E、F分别是BC、CD边上的一点.
(1)如图1:当四边形ABCD是正方形时,且∠EAF=45°,则EF、BE、DF满足的数量关系是 ,请说明理由;
(2)如图2:当AB=AD,∠B=∠D=90°,∠EAF是∠BAD的一半,问:(1)中的数量关系是否还存在? (填是或否)
(3)在(2)的条件下,将点E平移到BC的延长线上,请在图3中补全图形,并写出EF、BE、DF的关系.
【答案】(1)EF=BE+DF,理由详见解析;(2)是;(3)图详见解析,EF=BE﹣DF.
【解析】
(1)先判断出△ABM≌△ADF,进而得出AM=AF,∠BAM=∠DAF,然后由∠EAF=45°,证得∠EAM=∠EAF,继而证得△EAM≌△EAF,继而证得结论;
(2)首先延长CB到P使BP=DF,证得△ABP≌△ADF(SAS),再证得△APE≌△AFE(SAS),继而证得结论;
(3)首先在BC上截取BP=DF,证得△ABP≌△ADF(SAS),再证得△APE≌△AFE(SAS),即可得EF=BE﹣BP=BE﹣DF.
解:(1)EF=BE+DF,
理由:如图1,延长CB至M,使BM=DF,
∵四边形ABCD是正方形,
∴AB=AD,∠ABM=∠D=90°,
在△ABM和△ADF中,
,
∴△ABM≌△ADF(SAS),
∴AM=AF,∠BAM=∠DAF,
∵四边形ABCD是正方形,∠EAF=45°,
∴∠DAF+∠BAE=45°,
∴∠EAM=∠BAM+∠BAE=45°,
∴∠EAM=∠EAF,
在△EAM和△EAF中,
,
∴△EAM≌△EAF(SAS),
∴EF=EM=BM+BE=BE+DF;
故答案为:EF=BE+DF;
(2)是存在,
理由如下:延长CB到P使BP=DF,
∵∠ABC=∠D=90°,
∴∠ABP=90°,
∴∠ABP=∠D,
在△ABP和△ADF中,
,
∴△ABP≌△ADF(SAS),
∴AP=AF,∠BAP=∠DAF,
∵∠EAF=∠BAD,
∴∠BAE+∠DAF=∠EAF,
∴∠BAP+∠FAD=∠EAF,
即:∠EAP=∠EAF,
在△APE和△AFE中,
,
∴△APE≌△AFE(SAS),
∴PE=FE,
∴EF=BE+DF;
故答案为:是;
(3)如图3,补全图形.
证明:在BC上截取BP=DF,
∵∠B=∠ADC=90°,
∴∠ADF=90°,
∴∠B=∠ADF,
在△ABP和△ADF中,
,
∴△ABP≌△ADF(SAS),
∴AP=AF,∠BAP=∠DAF,
∵∠EAF=∠BAD,
∴∠DAE+∠DAF=∠BAD,
∴∠BAP+∠EAD=∠BAD,
∴∠EAP=∠BAD=∠EAF,
在△APE和△AFE中,
,
∴△APE≌△AFE(SAS),
∴PE=FE,
∴EF=BE﹣BP=BE﹣DF.
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,AC=BC,∠ACB=90°,D为AC延长线上一点,连接BD,在BC边上取一点E,使得CD=CE,连接AE并延长交BD于点F.
(1)依题意补全图形;
(2)求证:AF⊥BD;
(3)连接CF,点C 关于BD的对称点是Q,连接FQ,用等式表示线段CF,CQ之间的数量关系,并加以证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,∠C=Rt∠,AB=5cm,BC=3cm,若动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒1cm,设出发的时间为t秒.
(1)出发2秒后,求△ABP的周长.
(2)问t满足什么条件时,△BCP为直角三角形?
(3)另有一点Q,从点C开始,按C→B→A→C的路径运动,且速度为每秒2cm,若P、Q两点同时出发,当P、Q中有一点到达终点时,另一点也停止运动.当t为何值时,直线PQ把△ABC的周长分成相等的两部分?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.
(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;
(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?
(3)如果该企业要使每天的销售利润不低于4000元,且每天的总成本不超过7000元,那么销售单价应控制在什么范围内?(每天的总成本=每件的成本×每天的销售量)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知点O为直线AB上的一点,∠EOF为直角,OC平分∠BOE.
(1)如图1,若∠AOE=45°,写出∠COF等于多少度;
(2)如图1,若∠AOE=求∠COF的度效(用含的代数式表示);
(3)如图2,若∠AOE=OD平分∠AOC,且∠AOD-∠BOF=45°,求的值。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将一副直角三角板如图放置,使含30°角的三角板的直角边和含45°角的三角板的一条直角边在同一条直线上,则∠1的度数为( )
A.75°
B.65°
C.45°
D.30°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列多项式的乘法中,能用平方差公式计算的是( )
A. (-m +n)(m - n) B. (a +b)(b -a)
C. (x + 5)(x + 5) D. (3a -4b)(3b +4a)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com