精英家教网 > 初中数学 > 题目详情

【题目】如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切于点D,CE⊥AD,交AD的延长线于点E.
(1)求证:∠BDC=∠A;
(2)若CE=4,DE=2,求AD的长.

【答案】
(1)证明:连接OD,

∵CD是⊙O切线,

∴∠ODC=90°,

即∠ODB+∠BDC=90°,

∵AB为⊙O的直径,

∴∠ADB=90°,

即∠ODB+∠ADO=90°,

∴∠BDC=∠ADO,

∵OA=OD,

∴∠ADO=∠A,

∴∠BDC=∠A


(2)解:∵CE⊥AE,

∴∠E=∠ADB=90°,

∴DB∥EC,

∴∠DCE=∠BDC,

∵∠BDC=∠A,

∴∠A=∠DCE,

∵∠E=∠E,

∴△AEC∽△CED,

∴EC2=DEAE,

∴16=2(2+AD),

∴AD=6.


【解析】(1)连接OD,由CD是⊙O切线,得到∠ODC=90°,根据AB为⊙O的直径,得到∠ADB=90°,等量代换得到∠BDC=∠ADO,根据等腰三角形的性质得到∠ADO=∠A,即可得到结论;(2)根据垂直的定义得到∠E=∠ADB=90°,根据平行线的性质得到∠DCE=∠BDC,根据相似三角形的性质得到 ,解方程即可得到结论.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y=ax2+bx+c(a<0)的对称轴为x=1,交x轴的一个交点为(x1 , 0),且﹣1<x1<0,有下列5个结论:①abc>0;②9a﹣3b+c<0;③2c<3b;④(a+c)2<b2;⑤a+b>m(am+b)(m≠1的实数)其中正确的结论有( )

A.1个
B.2个
C.3个
D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABCD的对角线AC,BD交于点O,AE平分∠BAD交BC于点E,且∠ADC=60°,AB=BC,连结OE.下列结论:

①∠CAD=30°;②SABCD=AB·AC;③OB=AB;④OE=BC,成立的结论有______.(填序号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在数学活动课上,小明提出这样一个问题:如图,∠BC=90°,EBC的中点,DE平分∠ADCCED=35°,则∠EAB的度数是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,BD是△ABC的角平分线,它的垂直平分线分别交AB、BC于点E、F、G,连接ED、DG.
(1)请判断四边形EBGD的形状,并说明理由;
(2)若∠ABC=30°,∠C=45°,ED=2,求GC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线经过点(4,3),且当 时, 有最小值 .
(1)求这条抛物线的解析式.
(2)写出 的增大而减小的自变量 的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A,B,C在⊙O上,已知∠ABC=130°,则∠AOC=( )

A.100°
B.110°
C.120°
D.130°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商店分两次购进两种商品进行销售,两次购进同一种商品的进价相同,具体情况如下表所示:

购进数量(件)

购进所需费用(元)

第一次

30

40

3800

第二次

40

30

3200

1)求两种商品每件的进价分别是多少元?

2)商场决定种商品以每件30元出售,种商品以每件100元出售.为满足市场需求,需购进两种商品共1000件,且种商品的数量不少于种商品数量的4倍,请你求出获利最大的进货方案,并确定最大利润.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AEBF,AC平分BAE,且交BF于点C,BD平分ABF,且交AE于点D,AC与BD相交于点O,连接CD

(1)求AOD的度数;

(2)求证:四边形ABCD是菱形.

查看答案和解析>>

同步练习册答案