精英家教网 > 初中数学 > 题目详情

【题目】如图,点A,B,C在⊙O上,已知∠ABC=130°,则∠AOC=( )

A.100°
B.110°
C.120°
D.130°

【答案】A
【解析】在优弧AC上取点D,连接AD,CD,

∵四边形ABCD是圆内接四边形,∠ABC=130°,

∴∠D=180°-130°=50°.

∵∠D与∠AOC是同弧所对的圆周角与圆心角,

∴∠AOC=2∠D=100°.

所以答案是:A.


【考点精析】解答此题的关键在于理解圆周角定理的相关知识,掌握顶点在圆心上的角叫做圆心角;顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角;一条弧所对的圆周角等于它所对的圆心角的一半,以及对圆内接四边形的性质的理解,了解把圆分成n(n≥3):1、依次连结各分点所得的多边形是这个圆的内接正n边形2、经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】将一副直角三角板如图放置,使含30°角的三角板的直角边和含45°角的三角板的一条直角边在同一条直线上,则∠1的度数为(
A.75°
B.65°
C.45°
D.30°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列多项式的乘法中,能用平方差公式计算的是( )

A. (-m +n)(m - n) B. a +b)(b -a)

C. (x + 5)(x + 5) D. (3a -4b)(3b +4a)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切于点D,CE⊥AD,交AD的延长线于点E.
(1)求证:∠BDC=∠A;
(2)若CE=4,DE=2,求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,有一转盘中有A、B两个区域,A区域所对的圆心角为120°,让转盘自由转动两次.利用树状图或列表求出两次指针都落在A区域的概率。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】随着人们环保意识的增强,低碳生活成为人们提倡的生活方式,黄先生要从某地到福州,若乘飞机需要3小时,乘汽车需要9小时.这两种交通工具每小时排放的二氧化碳总量为70千克,已知飞机每小时二氧化碳的排放量比汽车多44千克,黄先生若乘汽车去福州,那么他此行与乘飞机相比减少二氧化碳排放量多少千克?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AB=24 cm, BC=8 cm,点P从点A开始沿折线A-B-C-D4 cm/s的速度移动,点Q从点C开始沿CD边以2 cm/s的速度移动,如果点PQ分别从点AC同时出发,当其中一点到达点D时,另一点也随之停止运动,设运动时间为ts.t为何值时,四边形QPBC为矩形?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】中国古代数学家们对于勾股定理的发现和证明,在世界数学史上具有独特的贡献和地位,体现了数学研究中的继承和发展.现用4个全等的直角三角形拼成如图所示“弦图”.RtABC中,∠ACB=90°,若,请你利用这个图形解决下列问题:

(1)试说明

(2)如果大正方形的面积是10,小正方形的面积是2,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,在平面直角坐标系中,点的坐标分别是

1)求的值;

2)在轴上是否存在点,使三角形的面积是?若存在,求出点的坐标;若不存在,请说明理由;

3)已知点轴正半轴上一点,且到轴的距离为,若点沿轴负半轴方向以每秒个单位长度平移至点,当运动时间为多少秒时,四边形的面积个平方单位?并写出此时点的坐标.

查看答案和解析>>

同步练习册答案