【题目】某条道路上通行车辆限速60千米/时,道路的AB段为监测区,监测点P到AB的距离PH为50米(如图).已知点P在点A的北偏东45°方向上,且在点B的北偏西60°方向上,点B在点A的北偏东75°方向上,那么车辆通过AB段的时间在多少秒以内,可认定为超速?(参考数据:≈1.7,≈1.4).
【答案】车辆通过AB段的时间在8.1秒以内,可认定为超速
【解析】分析:根据点到直线的距离的性质,构造直角三角形,然后利用解直角三角形的应用,解直角三角形即可.
详解:如图,由题意知∠CAB=75°,∠CAP=45°,∠PBD=60°,
∴∠PAH=∠CAB–∠CAP=30°,
∵∠PHA=∠PHB=90°,PH=50,∴AH===50,
∵AC∥BD,∴∠ABD=180°–∠CAB=105°,∴∠PBH=∠ABD–∠PBD=45°,
则PH=BH=50,∴AB=AH+BH=50+50,
∵60千米/时=米/秒,∴时间t==3+3≈8.1(秒),
即车辆通过AB段的时间在8.1秒以内,可认定为超速.
科目:初中数学 来源: 题型:
【题目】如图,在矩形中,点同时从点出发,分别在,上运动,若点的运动速度是每秒2个单位长度,且是点运动速度的2倍,当其中一个点到达终点时,停止一切运动.以为对称轴作的对称图形.点恰好在上的时间为__秒.在整个运动过程中,与矩形重叠部分面积的最大值为________________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,E、F分别是正方形ABCD的边CD,AD上的点,且CE=DF,AE,BF相交于点O,下列结论:①AE=BF;②AE⊥BF;③AO=OE;④S△AOB=S四边形DEOF.其中正确的有( )
A. 1个B. 2个C. 3个D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明参加某个智力竞答节目,答对最后两道单选题就顺利通关.第一道单选题有3个选项,第二道单选题有4个选项,这两道题小明都不会,不过小明还有一个“求助”没有用(使用“求助”可以让主持人去掉其中一题的一个错误选项).
(1)如果小明第一题不使用“求助”,那么小明答对第一道题的概率是 .
(2)如果小明将“求助”留在第二题使用,请用树状图或者列表来分析小明顺利通关的概率.
(3)从概率的角度分析,你建议小明在第几题使用“求助”.(直接写出答案)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC中,AB=AC=,BC=4.线段AB的垂直平分线DF分别交边AB、AC、BC所在的直线于点D、E、F.
(1)求线段BF的长;
(2)求AE:EC的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知四边形ABCD中,∠BAD=∠BDC=90°,BD2=ADBC.
(1)求证:AD∥BC;
(2)过点A作AE∥CD交BC于点E.请完善图形并求证:CD2=BEBC.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线L:与x轴、y轴分别交于A、B两点,在y轴上有一点C(0,4),线段OA上的动点M(与O,A不重合)从A点以每秒1个单位的速度沿x轴向左移动。
(1)求A、B两点的坐标;
(2)求△COM的面积S与M的移动时间t之间的函数关系式,并写出t的取值范围;
(3)当t何值时△COM≌△AOB,并求此时M点的坐标。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】材料阅读;
小明偶然发现线段AB的端点A的坐标为(1,2),端点B的坐标为(3,4),则线段AB中点的坐标为(2,3),通过进一步的探究发现在平面直角坐标系中,以任意两点P(x1,y1)、Q(x2,y2)为端点的线段中点坐标为(,).
知识运用:
如图,矩形ONEF的对角线相交于点M,ON、OF分别在x轴和y轴上,O为坐标原点,点E的坐标为(4,3),则点M的坐标为 .
能力拓展:
在直角坐标系中,有A(﹣1,2)、B(3,4)、C(l,4)三点,另有一点D与点A、B、C构成平行四边形的顶点,求点D的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,△DEF中,∠DEF=90°,∠D=30°,DF=16,B是斜边DF上一动点,过B作AB⊥DF于B,交边DE(或边EF)于点A,设BD=x,△ABD的面积为y,则y与x之间的函数图象大致为( )
A. (A) B. (B) C. (C) D. (D)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com