精英家教网 > 初中数学 > 题目详情

【题目】已知关于x的一元二次方程有两个不相等的实数根

(1)求k的取值范围;

(2)若k取小于1的整数,且此方程的解为整数,则求出此方程的两个整数根;

(3)在(2)的条件下,二次函数x轴交于AB两点(A点在B点的左侧),D点在此抛物线的对称轴上,若∠DAB=60,直接写出D点的坐标

【答案】1;(2(3)

【解析】分析:(1)根据根的判别式,有两个不等的实根,根的判别式△=b2-4ac>0列出关于k的不等式12+8k>0,求解即可得到k的取值范围;

(2)利用(1)中k的取值范围求得k的整数解,然后将其代入关于x的一元二次方程x2-4x+1-2k=0并整理,再根据配方法进行求解;

(3)先求出二次函数的解析式,然后求出抛物线与x轴的交点,从而得到对称轴的解析式以及AB的长度,再根据∠DAB=60°求出点D到x轴的距离,然后根据点D在AB的上方与下方两种情况讨论得解.

详解:(1)∵关于x的一元二次方程x2-4x+1-2k=0有两个不等的实根,

∴△=(-4)2-4×1×(1-2k)=12+8k>0,

解得,k>-

(2)∵k取小于1的整数,

∴k=-1或0,

①当k=-1时,方程为x2-4x+3=0,

即(x-2)2=1,

∴x-2=1或x-2=-1,

解得x1=3,x2=1,

②当k=0时,方程为x2-4x+1=0,

即(x-2)2=3,

∵方程的解为整数,

∴k=0不符合,

∴k=-1,此时方程的两个整数根是x1=3,x2=1;

(3)如图所示,根据(2),二次函数解析式为,y=x2-4x+3,

∴点A、B的坐标分别为A(1,0),B(3,0),

∴对称轴为x=2,

∴AC=(3-1)=1,

∵∠DAB=60°,

∴AD=2AC=2,

∴CD=

当点D在AB的上方时,坐标为(2,),在AB的下方时,坐标为(2,-),

∴点D的坐标为(2,)或(2,-).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】初一(1)班针对你最喜爱的课外活动项目对全班学生进行调查(每名学生分别选一个活动项目),并根据调查结果列出统计表,绘制成扇形统计图.

根据以上信息解决下列问题:

(1)

(2)扇形统计图中机器人项目所对应扇形的圆心角度数为

(3)从选航模项目的名学生中随机选取名学生参加学校航模兴趣小组训练,请用列举法(画树状图或列表)求所选取的名学生中恰好有名男生、名女生的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】用一定数目的点或大小相同的圆在等距离的排列下可以形成一个等边三角形数阵.古希腊著名数学家毕达哥拉斯用数……这些数量的(石子),都成功的排成了等边三角形数阵..

(问题提出)结果等于多少?

在图1所示的等边三角形数阵中,前行有个圆圈,前行有个圆圈,即,前行有个圆圈,即,则前行所有圆圈个数总和为

将图1旋转至图2,观察这两个三角形数阵中同一行圆圈个数(如第行的圆圈个数分别为个,个),发现同一行圆圈个数之和均为___________个,由此可得两个图前行圆圈个数总和为:___________,因此,___________.

(问题延伸)结果等于多少?

3

4

在图3所示的等边三角形数阵中,第行圆圈中的数为,即,第行两个圆圈中数字的和为.,第个圆圈中数字的和为(共个)..这样,该三角形数阵中所有圆圈中数字的和为.

将该三角形数阵经两次旋转可得如图4所示的三个三角形数阵,观察这三个三角形数阵中各行同一位置上圆圈中的数字(如第行的第一个圆圈中的数字分别为),发现相同位置上三个圆圈中数字之和均为___________,由此可得,这三个三角形数阵所有圆圈中数字的总和为:___________,因此,___________.

(规律应用)

根据以上发现,计算:的结果为___________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】反比例函数的图象如图所示,以下结论:

①常数m﹣1;

②在每个象限内,yx的增大而增大;

③若A(﹣1,h),B(2,k)在图象上,则hk;

④若P(x,y)在图象上,则P′(﹣x,﹣y)也在图象上.

其中正确的是(  )

A. ①② B. ②③ C. ③④ D. ①④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△OAB中,OA=OB=10cm,AOB=80°,以点O为圆心,半径为6cm的优弧弧MN分别交OA,OB于点M,N.

(1)点P在右半弧上(∠BOP是锐角),将OP绕点O逆时针旋转80°OP′.求证:AP=BP′;

(2)点T在左半弧上,若AT与弧相切,求AT的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校七年级全体学生在5名教师的带领下去公园秋游,公园的门票为每人30.现有两种优惠方案,甲方案:带队老师免费,学生按8折收费;乙方案:师生都按7.5折收费.

(1)若有n名学生,用含n的代数式表示两种优惠方案各需多少元?

(2)当n=70时,采用哪种方案更优惠?

(3)当n=100时,采用哪种方案更优惠?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在一笔直的海岸线l上有AB两个观测站,A在B的正东方向,AB=2(单位:km).有一艘小船在点P处,从A测得小船在北偏西60°的方向,从B测得小船在北偏东45°的方向.(结果都保留根号)

(1)求点P到海岸线l的距离;

(2)小船从点P处沿射线AP的方向航行一段时间后,到点C处,此时,从B测得小船在北偏西15°的方向.求点C与点B之间的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,长方形ABCD被分成六个小的正方,已知中间一个小正方形的边长为1,其它正方形的边长分别为abcd.观察图形并探索:(1b_____d_____;(用含a的代数式表示)(2)长方形ABCD的面积为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD是平行四边形,E、F是对角线AC上的两点,∠1=2.

(1)求证:AE=CF;

(2)求证:四边形EBFD是平行四边形.

查看答案和解析>>

同步练习册答案