精英家教网 > 初中数学 > 题目详情
已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG.
(1)直接写出线段EG与CG的数量关系;
(2)将图1中△BEF绕B点逆时针旋转45º,如图2所示,取DF中点G,连接EG,CG.你在(1)中得到的结论是否发生变化?写出你的猜想并加以证明.  
(3)将图1中△BEF绕B点旋转任意角度,如图3所示,再连接相应的线段,问(1)中的结论是否仍然成立?(不要求证明)
解:(1)CG=EG
(2)(1)中结论没有发生变化,即EG=CG.
证明:连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点.

在△DAG与△DCG中,
∵ AD=CD,∠ADG=∠CDG,DG=DG,
∴ △DAG≌△DCG.
∴ AG=CG.
在△DMG与△FNG中,
∵ ∠DGM=∠FGN,FG=DG,∠MDG=∠NFG,
∴ △DMG≌△FNG.
∴ MG=NG
在矩形AENM中,AM=EN.
在Rt△AMG 与Rt△ENG中,
∵ AM=EN, MG=NG,
∴ △AMG≌△ENG.
∴ AG=EG
∴ EG=CG.
(3)(1)中的结论仍然成立.
本题主要是利用正方形的性质和三角形全等来证明线段相等。难点在于正确的做出辅助线。
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,在正方形ABCD中,等边三角形AEF的顶点E、F分别在BC和CD上.
(1)求证:CE=CF;
(2)若等边三角形AEF的边长为2,求正方形ABCD的周长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

填在下面各正方形中的五个数之间都有相同的规律,根据这种规律,m的值是     

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,已知在梯形ABCD中,AD∥BC,∠ABC=60°,BD平分∠ABC,且BD⊥DC.
求证:梯形ABCD是等腰梯形                    

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,A、B、C、D为矩形的四个顶点,AD=4cm,AB=dcm。动点E、F分别从点D、B出发,点E以1 cm/s的速度沿边DA向点A移动,点F以1 cm/s的速度沿边BC向点C移动,点F移动到点C时,两点同时停止移动。以EF为边作正方形EFGH,点F出发xs时,正方形EFGH的面积为ycm2。已知y与x的函数图象是抛物线的一部分,如图2所示。请根据图中信息,解答下列问题:
(1)自变量x的取值范围是    ▲   
(2)d=    ▲   ,m=    ▲   ,n=    ▲   
(3)F出发多少秒时,正方形EFGH的面积为16cm2

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在平行四边形ABCD中,AB=3cm,BC=5cm,对角线AC,BD相交于点O,则OA的取值范围是(  )
A.2cm<OA<5cmB.2cm<OA<8cm
C.1cm<OA<4cmD.3cm<OA<8cm

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

将矩形纸片ABCD按如图所示的方式折叠,AE、EF为折痕,∠BAE=30°,EB= ,折叠后,点C落在AD边上的C1处,并且点B落在EC1边上的B1处.则BC的长为(  )

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知四边形ABCD是梯形,AD∥BC,∠A=90°,BC=BD,CE⊥BD,垂足为E.
(1)求证:△ABD≌△ECB;
(2)若∠DBC=50°,求∠DCE的度数.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,左边是一个正方形,右边是一个直角三角形,则此正方形的面积是__________cm2

查看答案和解析>>

同步练习册答案