精英家教网 > 初中数学 > 题目详情

【题目】在平面直角坐标系xOy中,将一块含有45°角的直角三角板如图放置,直角顶点C的坐标为(1,0),顶点A的坐标为(0,2),顶点B恰好落在第一象限的双曲线上,现将直角三角板沿x轴正方向平移,当顶点A恰好落在该双曲线上时停止运动,则此时点C的对应点C′的坐标为(  )

A. ,0) B. (2,0) C. ,0) D. (3,0)

【答案】C

【解析】

解:过点BBDx轴于点D,∵∠ACO+∠BCD=90°,∠OAC+ACO=90°,∴∠OAC=∠BCD,在ACOBCD中,∵∠OAC=∠BCD,∠AOC=∠BDCAC=BC,∴△ACO≌△BCD(AAS),∴OC=BDOA=CD,∵A(0,2),C(1,0),∴OD=3,BD=1,∴B(3,1),∴设反比例函数的解析式为,将B(3,1)代入,∴k=3,∴,∴y=2代入,∴x=,当顶点A恰好落在该双曲线上时,此时点A移动了个单位长度,C也移动了个单位长度,此时点C的对应点C的坐标为(,0).故选C.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图所示,已知 AD 是△ABC 的边 BC 上的中线.

(1)作出△ABD 的边 BD 上的高.

(2)若△ABC 的面积为 10,求△ADC 的面积.

(3)若△ABD 的面积为 6,且 BD 边上的高为 3,求 BC 的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)如图,在等腰直角中,,将边绕点顺时针旋转得到线段,则的面积为_______

(2)如图,在直角 中,,将边绕点顺时针旋转得到线段,连接,求的面积,并说明理由.(用含的式子表示)

(3)如图,在等腰中,,将边绕点顺时针旋转得到线段,连接,若,则 的面积为 (用含的式子表示).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,∠C90°,∠CAD=∠BADDEABE,点F在边AC上,连接DF

1)求证:ACAE

2)若CFBE,直接写出线段ABAFEB的数量关系:   

3)若AC8AB10,且ABC的面积等于24,求DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义:如图1,在△ABC和△ADE中,AB=AC=AD=AE,当∠BAC+∠DAE=180°时,我们称△ABC与△DAE互为“顶补等腰三角形”,△ABC的边BC上的高线AM叫做△ADE的“顶心距”,点A叫做“旋补中心”.

特例感知:

(1)在图2,图3中,△ABC与△DAE互为“顶补三角形”,AM,AN是“顶心距”.

①如图2,当∠BAC=90°时,AM与DE之间的数量关系为AM=  DE;

②如图3,当∠BAC=120°,BC=6时,AN的长为  

猜想论证:

(2)在图1中,当∠BAC为任意角时,猜想AM与DE之间的数量关系,并给予证明.

拓展应用

(3)如图4,在四边形ABCD,AD=AB,CD=BC,∠B=90°,∠A=60°,CD=2,在四边形ABCD的内部是否存在点P,使得△PAD与△PBC互为“顶补等腰三角形”?若存在,请给予证明,并求△PBC的“顶心距”的长;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】给出定义,若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称该四边形为勾股四边形.

1)在你学过的特殊四边形中,写出两种勾股四边形的名称;

2)如图,将△ABC绕顶点B按顺时针方向旋转60°得到△DBE,连接ADDCCE,已知∠DCB=30°

求证:△BCE是等边三角形;

求证:DC2+BC2=AC2,即四边形ABCD是勾股四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠ACB=90°∠A=45°AB=4cm.点P从点A出发,以2cm/s的速度沿边AB向终点B运动.过点PPQ⊥AB交折线ACB于点QDPQ中点,以DQ为边向右侧作正方形DEFQ.设正方形DEFQ△ABC重叠部分图形的面积是ycm2),点P的运动时间为xs).

1)当点Q在边AC上时,正方形DEFQ的边长为 cm(用含x的代数式表示);

2)当点P不与点B重合时,求点F落在边BC上时x的值;

3)当0x2时,求y关于x的函数解析式;

4)直接写出边BC的中点落在正方形DEFQ内部时x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O直径,C是半圆上一点,连接BC、AC,过点OODBC与过点A的切线交于点D,连接DC并延长交AB的延长线于点E.

(1)求证:DE是⊙O的切线;

(2)若AE=3,CE=,求线段CE、BE与劣弧BC所围成的图形面积(结果保留根号和π).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,AP是⊙O的切线,点A为切点,BP与⊙O交于点C,点DAP的中点,连结CD.

(1)求证:CD是⊙O的切线;

(2)若AB=2,P=30°,求阴影部分的面积.

查看答案和解析>>

同步练习册答案